第1关:人脸检测
'''****************BEGIN****************'''
import face_recognition
image_path = './step1/image/children.jpg'
image = face_recognition.load_image_file(image_path)
face_locations = face_recognition.face_locations(image)
print(face_locations)
'''**************** END ****************'''import cv2
for face_location in face_locations:'''****************BEGIN****************'''top, right, bottom, left = face_locationcv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)'''**************** END ****************'''# 保存图片
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
cv2.imwrite("./step1/out/children.jpg", image_rgb)
第2关:人脸特征点获取
import face_recognition
'''****************BEGIN****************'''
# 获取人脸特征点image = face_recognition.load_image_file("./step2/image/laugh.jpg")face_landmarks_list = face_recognition.face_landmarks(image)
print(face_landmarks_list)
'''**************** END ****************'''import cv2# 绘制人脸特征点
for face_landmarks in face_landmarks_list:'''****************BEGIN****************'''for facial_feature in face_landmarks.keys():for pt_pos in face_landmarks[facial_feature]:cv2.circle(image, pt_pos, 1, (255, 0, 0), 2)'''**************** END ****************'''# 保存图片
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
cv2.imwrite("./step2/out/laugh.jpg", image_rgb)
第3关:人脸识别
import face_recognitiondef recognition():'''****************BEGIN****************'''# 导入图片known_image_path = "./step3/known_image/cyx1.jpg"known_image_cyz = face_recognition.load_image_file(known_image_path)unknown_image_1_path = "./step3/unknown_image/cyx2.jpg"unknown_image_2_path = "./step3/unknown_image/wlh.jpg"unknown_image_1 = face_recognition.load_image_file(unknown_image_1_path)unknown_image_2 = face_recognition.load_image_file(unknown_image_2_path)'''**************** END ****************''''''****************BEGIN****************'''# 编码获取128维特征向量cyz_encoding = face_recognition.face_encodings(known_image_cyz)[0]unknown_encoding_1 = face_recognition.face_encodings(unknown_image_1)[0]unknown_encoding_2 = face_recognition.face_encodings(unknown_image_2)[0]'''**************** END ****************''''''****************BEGIN****************'''# 比较特征向量值,识别人脸face1_result = face_recognition.compare_faces([cyz_encoding], unknown_encoding_1, tolerance=0.5)face2_result = face_recognition.compare_faces([cyz_encoding], unknown_encoding_2, tolerance=0.5)'''**************** END ****************'''return face1_result, face2_result
第4关:人脸识别绘制并展示
import face_recognition
import cv2'''****************BEGIN****************'''
# 加载已知图片
known_image_c_path = "./step4/known_image/Caocao.jpg"
known_image_xy_path = "./step4/known_image/XunYu.jpg"
known_image_smy_path = "./step4/known_image/SiMayi.jpg"
known_image_zch_path = "./step4/known_image/ZhangChunhua.jpg"known_image_cc = face_recognition.load_image_file(known_image_c_path)
known_image_xy = face_recognition.load_image_file(known_image_xy_path)
known_image_smy = face_recognition.load_image_file(known_image_smy_path )
known_image_zch = face_recognition.load_image_file( known_image_zch_path)'''**************** END ****************''''''****************BEGIN****************'''
# 对图片进行编码,获取128维特征向量caocao_encoding = face_recognition.face_encodings(known_image_cc)[0]
xy_encoding = face_recognition.face_encodings(known_image_xy)[0]
zys_encoding = face_recognition.face_encodings(known_image_smy)[0]
cyz_encoding = face_recognition.face_encodings(known_image_zch)[0]'''**************** END ****************''''''****************BEGIN****************'''
# 存为数组以便之后识别
known_faces = [caocao_encoding,xy_encoding,zys_encoding,cyz_encoding
]
'''**************** END ****************''''''****************BEGIN****************'''
# 加载待识别图片
unknown_image_1_path = "./step4/unknown_image/Caocao.jpg"
unknown_image_2_path = "./step4/unknown_image/Cuple.jpg"
unknown_image_3_path = "./step4/unknown_image/ZhangChunhua.jpg"
unknown_image_4_path = "./step4/unknown_image/XunYu.jpg"
unknown_image_5_path = './step4/unknown_image/A.jpg'unknown_image_1 = face_recognition.load_image_file(unknown_image_1_path)
unknown_image_2 = face_recognition.load_image_file(unknown_image_2_path)
unknown_image_3 = face_recognition.load_image_file(unknown_image_3_path)
unknown_image_4 = face_recognition.load_image_file(unknown_image_4_path)
unknown_image_5 = face_recognition.load_image_file(unknown_image_5_path)'''**************** END ****************''''''****************BEGIN****************'''
# 存为数组以遍历识别
unknown_faces = [unknown_image_1, unknown_image_2, unknown_image_3,unknown_image_4,unknown_image_5
]
'''**************** END ****************'''# 初始化一些变量
face_locations = []
face_encodings = []
face_names = []
frame_number = 0for frame in unknown_faces:face_names = []'''****************BEGIN****************'''face_locations = face_recognition.face_locations(frame)# 对图片进行编码,获取128维特征向量face_encodings = face_recognition.face_encodings(frame, face_locations)'''**************** END ****************'''for face_encoding in face_encodings:'''****************BEGIN****************'''# 识别图片中人脸是否匹配已知图片match = face_recognition.compare_faces(known_faces, face_encoding, tolerance=0.5)'''**************** END ****************''''''****************BEGIN****************'''name = Noneif match[0]:name = "Caocao"elif match[1]:name = "XunYu"elif match[2]:name = "SiMayi"elif match[3]:name = 'ZhangChunhua'else:name = 'Unknown''''**************** END ****************'''face_names.append(name)# 结果打上标签for (top, right, bottom, left), name in zip(face_locations, face_names):if not name:continue'''****************BEGIN****************'''# 绘制脸部区域框# 绘制脸部区域框cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)# 在脸部区域下面绘制人名cv2.rectangle(frame, (left, bottom - 25),(right, bottom), (0, 0, 255), cv2.FILLED)font = cv2.FONT_HERSHEY_DUPLEXcv2.putText(frame, name, (left + 6, bottom - 6),font, 0.5, (255, 255, 255), 1)'''**************** END ****************'''print(frame[left+6, bottom-6])print(frame[left, bottom])print(face_locations)print(face_names)# 保存图片image_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)path = './step4/out/' + name + str(face_locations[0][0]) + '.jpg'cv2.imwrite(path, image_rgb)