【GCN】GCN学习笔记一

  • 谱域图卷积
    • 卷积
      • 卷积定义
      • 离散空间的卷积
    • 图卷积简介
      • 卷积定理
      • 谱域图卷积实现思路
      • 如何定义图上的傅里叶变换
      • 拉普拉斯矩阵 (Laplacian Matrix)
      • 拉普拉斯矩阵的性质
      • 拉普拉斯矩阵的谱分解
      • 拉普拉斯矩阵与拉普拉斯算子
    • 图傅里叶变换
      • 图上的信号表示
      • 经典傅里叶变换
      • 特征向量基的性质
    • 总结
    • 三个经典图谱卷积模型
      • SCNN
      • ChebNet
      • GCN

谱域图卷积

卷积

卷积定义

卷积是分析数学中一种重要的运算,设 f ( x ) f(x) f(x) g ( x ) g(x) g(x) R \mathbb{R} R 上的可积函数,连续形式的卷积定义如下:

∫ − ∞ ∞ f ( τ ) g ( x − τ ) d τ (1) \int_{-\infin} ^{\infin} f(\tau) g(x - \tau) d\tau {\tag{1}} f(τ)g(xτ)dτ(1)

不同的函数和不同的卷积核可以的到不同的卷积结果。

离散空间的卷积

y n = x ∗ w = ∑ k = 1 k w k x n − k (2) y_n = x * w = \sum_{k=1}^k w_k x_{n-k} \tag{2} yn=xw=k=1kwkxnk(2)
请添加图片描述

图卷积简介

经典卷积网络无法处理图结构数据。目前图卷积实现思路:

  • 谱域图卷积
  • 空域图卷积

卷积定理

两个信号在空域的卷积的傅里叶变换等于两个信号在频域中的傅里叶变换的点乘,点乘(element-wise multiplication)是指对两个矩阵、向量或序列中的相应元素进行相乘运算。即:
F [ f 1 ( t ) ⋆ f 2 ( t ) ] = F 1 ( w ) . F 2 ( w ) (3) \mathcal{F} [f_1(t)\star f_2(t)] = F_1(w) . F_2(w) \tag{3} F[f1(t)f2(t)]=F1(w).F2(w)(3)

  • f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t) 是空域的两个信号
  • F 1 ( w ) F_1(w) F1(w) F 2 ( w ) F_2(w) F2(w) 是频域的两个信号
  • ⋆ \star 表示卷积操作
  • F \mathcal{F} F 表示傅里叶变换
  • $. $ 表示乘积操作

也可以写成:
f 1 ( t ) ⋆ f 2 ( t ) = F − 1 [ F 1 ( w ) . F 2 ( w ) ] (4) f_1(t)\star f_2(t) = \mathcal{F}^{-1} [F_1(w) . F_2(w)] \tag{4} f1(t)f2(t)=F1[F1(w).F2(w)](4)

  • F − 1 \mathcal{F}^{-1} F1 表示傅里叶逆变换

谱域图卷积实现思路

  • 将图信号 x x x 和卷积核 w w w 做傅里叶变换,得到频域信号 X X X W W W
  • 将频域信号 X X X W W W 做乘积操作,得到频域信号 Y Y Y
  • 将频域信号 Y Y Y 做傅里叶逆变换,得到图信号 y y y
  • y y y 即为图信号 x x x 和卷积核 w w w 卷积的结果

如何定义图上的傅里叶变换

基于图谱理论,图上的傅里叶变换使用图傅里叶变换(Graph Fourier Transform,GFT)来定义。GFT 的定义如下:
F G ( x ) = U T x (5) \mathcal{F}_G(x) = U^T x \tag{5} FG(x)=UTx(5)

  • x x x 是图信号
  • U U U 是图的特征向量矩阵

写成分量求和的形式为:
x ( i ) = ∑ k = 1 N u l ( i ) x ^ ( λ l ) (6) x(i) = \sum_{k=1}^N u_l(i)\hat{x}(\lambda_l) \tag{6} x(i)=k=1Nul(i)x^(λl)(6)

  • x ( i ) x(i) x(i) 表示图信号 x x x 在节点 i i i 处的值
  • u l ( i ) u_l(i) ul(i) 表示图的特征向量矩阵 U U U 的第 l l l 列的第 i i i 个元素
  • x ^ ( λ l ) \hat{x}(\lambda_l) x^(λl) 表示图信号 x x x 在特征值 λ l \lambda_l λl 处的值

拉普拉斯矩阵 (Laplacian Matrix)

拉普拉斯矩阵是图信号处理中的一个重要概念,它是图信号的频域表示。拉普拉斯矩阵的定义如下:
L = D − A (7) L = D - A \tag{7} L=DA(7)

  • D D D 是度矩阵, D i i = ∑ j A i j D_{ii} = \sum_j A_{ij} Dii=jAij
  • A A A 是邻接矩阵, A i j = 1 A_{ij} = 1 Aij=1 表示节点 i i i 和节点 j j j 之间有边,否则 A i j = 0 A_{ij} = 0 Aij=0
  • L L L 是拉普拉斯矩阵,否则 L i j = 0 L_{ij} = 0 Lij=0,$。

拉普拉斯矩阵计算示例
在这里插入图片描述

  • L i j = − 1 L_{ij} = -1 Lij=1 表示节点 i i i 和节点 j j j 之间有边
  • L i i = D i i L_{ii} = D_{ii} Lii=Dii 拉普拉斯对角线值等于度矩阵对角线值
  • L i j = 0 L_{ij} = 0 Lij=0 表示节点 i i i 和节点 j j j 之间没有边

拉普拉斯矩阵的性质

拉普拉斯矩阵是半正定矩阵,即 x T L x ≥ 0 x^T L x \geq 0 xTLx0,其中 x x x 是任意向量。证明过程:
x T L x = x T D x − x T A x = ∑ i = 1 N d i x i 2 − ∑ i , j = 1 N a i j x i x j = 1 2 ∑ i , j = 1 N a i j ( x i − x j ) 2 ≥ 0 (8) x^T L x = x^T D x - x^T A x = \sum_{i=1}^N d_i x_i^2 - \sum_{i,j=1}^N a_{ij} x_i x_j = \frac{1}{2} \sum_{i,j=1}^N a_{ij} (x_i - x_j)^2 \geq 0 \tag{8} xTLx=xTDxxTAx=i=1Ndixi2i,j=1Naijxixj=21i,j=1Naij(xixj)20(8)

  • n 阶对称矩阵一定有 n 个线性无关的实特征值
  • 对称矩阵的不同特征值对应的特征向量相互正交,这些拯救的特征向量构成的矩阵为正交矩阵
  • 拉普拉斯矩阵的特征值都是非负的,且至少有一个特征值为 0
  • 拉普拉斯矩阵的特征值为 0 的特征向量对应的是图的连通分量的个数,即 L L L 的零特征值的个数等于图的连通分量的个数。

拉普拉斯矩阵的谱分解

特征分解(Eigen decomposition),又称为谱分解(Spectral decomposition),是线性代数中的一个分解,将一个矩阵分解为特征向量和特征值的形式。拉普拉斯矩阵的谱分解如下:
L = U Λ U T (9) L = U \Lambda U^T \tag{9} L=UΛUT(9)

  • U U U 是拉普拉斯矩阵的特征向量矩阵
  • Λ \Lambda Λ 是拉普拉斯矩阵的特征值矩阵
  • U T U^T UT U U U 的转置矩阵

对拉普拉斯谱分解后,n阶对称矩阵一定有n个线性无关的特征向量相互正交,这些正交的特征向量构成的矩阵为正交矩阵。因此,拉普拉斯矩阵的特征向量矩阵 U U U 是正交矩阵,即 U T U = I U^T U = I UTU=I,其中 I I I 是单位矩阵。

拉普拉斯矩阵与拉普拉斯算子

拉普拉斯矩阵与拉普拉斯算子是两个不同的概念,但是它们之间有一定的联系。拉普拉斯算子的定义如下:
Δ f = ∇ ⋅ ∇ f = ∑ i = 1 n ∂ 2 f ∂ x i 2 (10) \Delta f = \nabla \cdot \nabla f = \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2} \tag{10} Δf=f=i=1nxi22f(10)

  • ∇ \nabla 是梯度算子
  • ∇ ⋅ \nabla \cdot 是散度算子
  • Δ \Delta Δ 是拉普拉斯算子
  • f f f 是函数
  • x i x_i xi 是第 i i i 个自变量
  • n n n 是自变量的个数
  • ∂ 2 f ∂ x i 2 \frac{\partial^2 f}{\partial x_i^2} xi22f 是函数 f f f 对自变量 x i x_i xi 的二阶偏导数
  • ∑ i = 1 n ∂ 2 f ∂ x i 2 \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2} i=1nxi22f 是函数 f f f 对所有自变量的二阶偏导数之和
  • Δ f \Delta f Δf 是函数 f f f 的拉普拉斯算子

图信号的拉普拉斯算子的定义如下:
Δ G f = U Δ f = U ∇ ⋅ ∇ f = U ∑ i = 1 n ∂ 2 f ∂ x i 2 (11) \Delta_G f = U \Delta f = U \nabla \cdot \nabla f = U \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2} \tag{11} ΔGf=UΔf=Uf=Ui=1nxi22f(11)

  • Δ G f \Delta_G f ΔGf 是图信号 f f f 的拉普拉斯算子
  • U U U 是拉普拉斯矩阵的特征向量矩阵
  • Δ f \Delta f Δf 是函数 f f f 的拉普拉斯算子
  • ∇ ⋅ ∇ f \nabla \cdot \nabla f f 是函数 f f f 的拉普拉斯算子

对以上的公式如何得到呢?对于二维图像的拉普拉斯算子,我们可以将其写成如下的形式:
Δ f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 (12) \Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \tag{12} Δf=x22f+y22f(12)
离散形式的拉普拉斯算子可以写成如下的形式:
Δ f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 = f ( x + 1 , y ) + f ( x − 1 , y ) − 2 f ( x , y ) h 2 + f ( x , y + 1 ) + f ( x , y − 1 ) − 2 f ( x , y ) h 2 (13) \Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{f(x+1,y) + f(x-1,y) - 2f(x,y)}{h^2} + \frac{f(x,y+1) + f(x,y-1) - 2f(x,y)}{h^2} \tag{13} Δf=x22f+y22f=h2f(x+1,y)+f(x1,y)2f(x,y)+h2f(x,y+1)+f(x,y1)2f(x,y)(13)
其中 h h h 是步长。将上式写成矩阵形式:
Δ f = 1 h 2 [ 0 1 0 1 − 4 1 0 1 0 ] [ f ( x − 1 , y ) f ( x , y ) f ( x + 1 , y ) ] + 1 h 2 [ 0 1 0 1 − 4 1 0 1 0 ] [ f ( x , y − 1 ) f ( x , y ) f ( x , y + 1 ) ] (14) \Delta f = \frac{1}{h^2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} f(x-1,y) \\ f(x,y) \\ f(x+1,y) \end{bmatrix} + \frac{1}{h^2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} f(x,y-1) \\ f(x,y) \\ f(x,y+1) \end{bmatrix} \tag{14} Δf=h21 010141010 f(x1,y)f(x,y)f(x+1,y) +h21 010141010 f(x,y1)f(x,y)f(x,y+1) (14)

我们这里令 h = 1,将上式写成矩阵卷积形式:

Δ f ( x ) = [ 0 1 0 1 − 4 1 0 1 0 ] ⋆ f ( x ) (16) \Delta f(x) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \star f(x) \tag{16} Δf(x)= 010141010 f(x)(16)
可以看出,二维图像的拉普拉斯算子,等于周围节点和自身节点的差值的和。对于图信号的拉普拉斯算子,节点的拉普拉斯算子,可以定义为与其相连节点与自身节点的差值的和,我们可以将其写成如下的形式:
Δ G f = ∑ j = 1 N A i j ( f i − f j ) = ∑ j = 1 N A i j f i − ∑ j = 1 N A i j f j = ∑ j = 1 N A i j f i − ∑ j = 1 N A j i f j (17) \Delta_G f = \sum_{j=1}^N A_{ij} (f_i - f_j) = \sum_{j=1}^N A_{ij} f_i - \sum_{j=1}^N A_{ij} f_j = \sum_{j=1}^N A_{ij} f_i - \sum_{j=1}^N A_{ji} f_j \tag{17} ΔGf=j=1NAij(fifj)=j=1NAijfij=1NAijfj=j=1NAijfij=1NAjifj(17)

  • A i j A_{ij} Aij 表示节点 i i i 和节点 j j j 之间的边的权重
  • ( f i − f j ) (f_i - f_j) (fifj) 表示节点 i i i 和节点 j j j 之间的差值

写成矩阵形式有:
Δ G f = [ Δ f 1 Δ f 2 ⋮ Δ f N ] = [ A 11 f 1 − ∑ j = 1 N A 1 i f j ⋮ A n n f n − ∑ j = 1 N A N i f j ] = D f − A f = L f (18) \begin{aligned} \Delta_G f =& \begin{bmatrix} \Delta f_1 \\ \Delta f_2 \\ \vdots \\ \Delta f_N \end{bmatrix} = & \begin{bmatrix} A_{11}f_1 - \sum_{j=1}^N A_{1i} f_j \\ \vdots \\ A_{nn}f_n - \sum_{j=1}^N A_{Ni} f_j \\ \end{bmatrix} = & Df - Af =Lf\tag{18} \end{aligned} ΔGf= Δf1Δf2ΔfN = A11f1j=1NA1ifjAnnfnj=1NANifj =DfAf=Lf(18)

  • L L L 为拉普拉斯矩阵
  • 对信号 f f f 左乘一个 拉普拉斯矩阵可以得到信号 f f f的拉普拉斯算子。

图傅里叶变换

图上的信号表示

图上的信号一般表达为一个向量。假设有n个节点。图上的信号记为:
x = [ x 1 x 2 ⋮ x n ] (19) x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \tag{19} x= x1x2xn (19)

  • x i ∈ R x_i \in \mathbb{R} xiR 表示节点 i i i 上的信号.

经典傅里叶变换

经典傅里叶变换的定义如下:
傅里叶变换公式如下:
X ( ω ) = ∫ − ∞ ∞ x ( t ) e − j ω t d t (20) X(\omega) = \int_{-\infin}^{\infin} x(t) e^{-j \omega t} dt \tag{20} X(ω)=x(t)etdt(20)
离散傅里叶变换公式如下:
X ( ω ) = ∑ n = 0 N − 1 x ( n ) e − j ω n (21) X(\omega) = \sum_{n=0}^{N-1} x(n) e^{-j \omega n} \tag{21} X(ω)=n=0N1x(n)ejωn(21)

经典傅里叶变换,是将一个函数表示成了一个若干个正交基函数的线性组合。对于图上的信号,如果要进行一个傅里叶变换,很自然的我们想到,我们也要找到一组正交基,通过这组正交基的线性组合来表达 图上的信号。

矩阵形式为:
x = U x ^ (23) x = U \hat{x} \tag{23} x=Ux^(23)

  • x x x 表示图上的信号
  • U U U 表示图的特征向量矩阵
  • x ^ \hat{x} x^ 表示图信号 x x x 的傅里叶系数

如何求 x ^ \hat{x} x^ 呢?我们可以将上式两边同时左乘 U T U^T UT,得到:
U T x = U T U x ^ = I x ^ = x ^ (24) U^T x = U^T U \hat{x} = I \hat{x} = \hat{x} \tag{24} UTx=UTUx^=Ix^=x^(24)

  • I I I 表示单位矩阵
  • x ^ \hat{x} x^ 表示图信号 x x x 的傅里叶系数
  • U U U 表示图的特征向量矩阵
  • x x x 表示图上的信号
  • U T U^T UT 表示 U U U 的转置矩阵

因此,我们可以得到:
x ^ = U T x (25) \hat{x} = U^T x \tag{25} x^=UTx(25)

  • x ^ \hat{x} x^ 表示图信号 x x x 的傅里叶系数
  • U U U 表示图的特征向量矩阵
  • x x x 表示图上的信号
  • U T U^T UT 表示 U U U 的转置矩阵
  • x ^ \hat{x} x^ 表示图信号 x x x 的傅里叶系数

特征向量基的性质

  • 拉普拉斯矩阵的特征值担任了和频率类似的位置。
    • 特征值越大,对应的特征向量的频率越高。
    • 特征值越小,对应的特征向量的频率越低。
    • 特征值为 0 的特征向量对应的是图的连通分量的个数,即 L L L 的零特征值的个数等于图的连通分量的个数。
  • 拉普拉斯矩阵的特征向量担任了基函数的位置。
    • 0特征值对应一个常数特征向量,这个和傅里叶变换中的常数项类似。
    • 低特征值对应的特征向量比较平滑,高特征值对应的特征向量变换比较剧烈。两者对应于低频基函数和高频基函数。

如何理解这两个结论呢?
我们使用图拉普拉斯的二次型(graph Laplacian quadratic form) 来定义信号的平滑程度。其表示有边相连的两个节点信号的平方差乘以权重的求和,其值越小,代表 越平滑

x ⊤ L x = 1 2 ∑ i , j = 1 N A i j ( x i − x j ) 2 (28) x^{\top} L x = \frac{1}{2}\sum_{i,j=1}^N A_{ij} (x_i - x_j)^2 \tag{28} xLx=21i,j=1NAij(xixj)2(28)

又因为
x ⊤ L x = x ⊤ U Λ U ⊤ x = x ^ ⊤ Λ x ^ = ∑ k = 1 N λ k x ^ 2 ( λ k ) (29) x^{\top} L x = x^{\top} U \Lambda U^{\top} x = \hat{x}^{\top} \Lambda \hat{x} = \sum_{k=1}^N \lambda_k \hat{x}^2(\lambda_k) \tag{29} xLx=xUΛUx=x^Λx^=k=1Nλkx^2(λk)(29)
所以对应特征值越小,对应的特征向量越平滑。

总结

利用图傅里叶变换,可以将定义在图节点上的信号 x ∈ R n x\in\mathbb{R}^n xRn 从空间域转换到谱域。

  • 空间域到谱域的变换: x → x ^ = U T x x\rightarrow \hat{x} = U^T x xx^=UTx
  • 谱域到空间域的变换: x ^ → x = U x ^ \hat{x} \rightarrow x = U \hat{x} x^x=Ux^
  • 其中 L = U Λ U − 1 L = U \Lambda U^{-1} L=UΛU1

卷积定理

  • 空间域的卷积定理: x ⋆ h → X ( ω ) H ( ω ) x\star h \rightarrow X(\omega) H(\omega) xhX(ω)H(ω)

x ⋆ g = F − 1 ⊙ [ X ( ω ) H ( ω ) ] = U ( U ⊤ x ⊙ U ⊤ g ) (30) x \star g = \mathcal{F}^{-1} \odot [X(\omega) H(\omega)] = U(U^{\top}x \odot U^{\top}g) \tag{30} xg=F1[X(ω)H(ω)]=U(UxUg)(30)
如果以矩阵乘法的形式表达这个公式,去掉 harmand 乘积。同时,通常我们并不关心空间域上的滤波器信号g是什么样子,只关心其在频率域的情况。

g θ = ( U ⊤ g ) = diag ( λ g ) = diag ( ( ^ λ ) ) g_{\theta} = (U^{\top}g) = \text{diag} (\lambda g) =\text{diag} (\hat(\lambda)) gθ=(Ug)=diag(λg)=diag((^λ))

则公式等价转换成下式:
x ⋆ g = U diag ( g ^ ) U ⊤ x (31) x \star g =U \text{diag}(\hat{g}) U^{\top} x \tag{31} xg=Udiag(g^)Ux(31)

  • diag ( g ^ ( λ i ) ) \text{diag}(\hat{g}(\lambda_i)) diag(g^(λi)) 是谱域卷积的一个分量。

三个经典图谱卷积模型

卷积网络中不同层的特征图:
在这里插入图片描述

SCNN

核心思想:

  • 用可学习的对角矩阵来替代谱域的卷积核,从而实现图卷积操作。

ChebNet

Chebyshev多项式
Chebyshev多项式是一类具有重要应用的正交多项式,其定义如下:
T 0 ( x ) = 1 , T 1 ( x ) = x , T n + 1 ( x ) = 2 x T n ( x ) − T n − 1 ( x ) (32) T_0(x) = 1, T_1(x) = x, T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \tag{32} T0(x)=1,T1(x)=x,Tn+1(x)=2xTn(x)Tn1(x)(32)

矩阵形式为:
T 0 ( L ) = I , T 1 ( L ) = L , T n + 1 ( L ) = 2 L T n ( L ) − T n − 1 ( L ) (32) T_0(L) = I, T_1(L) = L, T_{n+1}(L) = 2LT_n(L) - T_{n-1}(L) \tag{32} T0(L)=I,T1(L)=L,Tn+1(L)=2LTn(L)Tn1(L)(32)

多项式插值:
f ( x ) = ∑ k = 0 K − 1 α k x k − 1 (33) f(x) = \sum_{k=0}^{K-1} \alpha_k x^{k-1} \tag{33} f(x)=k=0K1αkxk1(33)
切比雪夫插值将幂函数换成了切比雪夫多项式的项:
f ( x ) = ∑ k = 0 K − 1 α k T k ( x ) (34) f(x) = \sum_{k=0}^{K-1} \alpha_k T_k(x) \tag{34} f(x)=k=0K1αkTk(x)(34)

ChebNet的核心思想:

  • 利用切比雪夫多项式来近似谱域的卷积核,从而实现图卷积操作。
  • 利用切比雪夫多项式的递归性质,可以将谱域的卷积核的近似程度控制在任意的精度范围内。

x ⋆ g θ = U g θ U ⊤ x = U ∑ k = 0 K β k T k ( Λ ) U ⊤ x = ∑ k = 0 K β k T k ( L ) ( U Λ U ⊤ ) x = ∑ k = 0 K β k T k ( L ) x (35) \begin{aligned} x \star g_{\theta} =& Ug_{\theta}U^{\top}x \\ =& U \sum_{k=0}^{K}\beta_k T_k(\Lambda) U^{\top} x \\ =& \sum_{k=0}^{K}\beta_k T_k(L)(U \Lambda U^{\top}) x \\ =& \sum_{k=0}^{K}\beta_k T_k(L) x \\ \end{aligned} \tag{35} xgθ====UgθUxUk=0KβkTk(Λ)Uxk=0KβkTk(L)(UΛU)xk=0KβkTk(L)x(35)

  • 卷积核只有 K+1个可学习的参数,一般 k 远小于 n, 因此参数量大大减少。
  • 采用切比雪夫多项式代替谱域的卷积后,不需要特征值分解了。
  • 卷积核又严格的空间局部性,同时,k就是卷积核的感受野半径。即中心顶点K阶最邻近节点作为领域节点。
    这样我们就可以不用去计算拉普拉斯分解,直接使用拉普拉斯矩阵来进行卷积操作了。

GCN

GCN的核心思想:

  • 利用一阶切比雪夫多项式来近似谱域的卷积核,从而实现图卷积操作。
  • 利用一阶切比雪夫多项式的递归性质,可以将谱域的卷积核的近似程度控制在任意的精度范围内。

x ⋆ g θ = U g θ U ⊤ x = ∑ k = 0 k β k T k ( L ^ ) x = ∑ k = 0 1 β k T k ( L ^ ) x = β 0 T 0 ( L ^ ) x + β 1 T 1 ( L ^ ) x = ( β 0 + β 1 L ^ ) x = ( β 0 + β 1 ( L − I n ) ) x = ( β 0 − β 1 ( D − 1 / 2 W D − 1 / 2 ) ) x = ( θ ( D − 1 / 2 W D − 1 / 2 + I n ) ) x (36) \begin{aligned} x \star g_{\theta} =& Ug_{\theta}U^{\top}x \\ =& \sum_{k=0}^{k}\beta_k T_k(\hat{L})x \\ =& \sum_{k=0}^1 \beta_k T_k(\hat{L})x \\ =& \beta_0 T_0(\hat{L})x + \beta_1 T_1(\hat{L})x \\ =& (\beta_0 + \beta_1 \hat{L})x =& (\beta_0 + \beta_1(L - I_n))x \\ =& (\beta_0 - \beta_1(D^{-1/2WD^{-1/2}}))x \\ =& (\theta(D^{-1/2WD^{-1/2}} + I_n))x \\ \end{aligned} \tag{36} xgθ=======UgθUxk=0kβkTk(L^)xk=01βkTk(L^)xβ0T0(L^)x+β1T1(L^)x(β0+β1L^)x=(β0β1(D1/2WD1/2))x(θ(D1/2WD1/2+In))x(β0+β1(LIn))x(36)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/154312.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python Web框架的三强之争:Flask、Django和FastAPI

JetBrains 公布 2022 Python 开发者调查结果。 完整报告地址:https://lp.jetbrains.com/zh-cn/python-developers-survey-2022/ 这是由 Python 软件基金会 (PSF) 和 JetBrains 共同开展的第六次官方年度 Python 开发者调查,回复于 2022 年 10 月至 12 …

2013年12月13日 Go生态洞察:Go在App Engine上的工具、测试和并发

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…

Java高级编程-----网络编程

网络通信协议 通过计算机网络可以实现多台计算机连接,但是不同计算机的操作系统和硬件体系结构不同,为了提供通信支持,位于同一个网络中的计算机在进行连接和通信时必须要遵守一定的规则,这就好比在道路中行驶的汽车一定要遵守交…

mricorn 手动勾画ROI并保存为模版的方法步骤

mricorn软件手动勾画ROI: 这里拿一个做了切除手术的癫痫病人举例子,我们需要把切除区域勾画出来并保存成切除的模版。 1、将图像导入到mricorn中 2、逐层勾画ROI并填充 比较方便的是从切除区域的起始层进行勾画,这里为了方便展示只勾画中间…

计算机网络的OSI七层模型

目录 1、OSI七层模型是什么 1.1 物理层(Physical Layer) 1.2 数据链路层(Data Link Layer) 1.3 网络层(Network Layer) 1.4 传输层(Transport Layer) 1.5 会话层(S…

5款免费BI数据可视化工具,2023年最新精选推荐!

BI可视化工具顾名思义是进行数据分析和可视化的软件,旨在将数据以表格、图表、仪表盘等形式展示出来,让用户能够更加直观了解其业务状况、发现问题,并在必要时进行决策。   市面上BI数据可视化工具很多,目前比较火的像国外的Tabl…

CTF/AWD竞赛标准参考书+实战指南

随着网络安全问题日益凸显,国家对网络安全人才的需求持续增长,其中,网络安全竞赛在国家以及企业的人才培养和选拔中扮演着至关重要的角色。 在数字化时代,企业为了应对日益增长的攻击威胁,一般都在大量部署安全产品、…

uview-plus u-picker的defaultIndexs修改后无效的问题

uniapp项目中使用了uview-plus组件库,在使用u-picker组件时,发现其默认的选中属性 defaultIndex是一次性的,修改后无法响应,解决办法就是在u-picker源码中修改这个属性的watch,源码位置在uni_modules/uview-plus/components/u-pi…

Hive 定义变量 变量赋值 引用变量

Hive 定义变量 变量赋值 引用变量 变量 hive 中变量和属性命名空间 命名空间权限描述hivevar读写用户自定义变量hiveconf读写hive相关配置属性system读写java定义额配置属性env只读shell环境定义的环境变量 语法 Java对这个除env命名空间内容具有可读可写权利; …

SQL零基础入门教程,贼拉详细!贼拉简单! 速通数据库期末考!(十一)

COUNT() 计数函数 COUNT() 函数返回匹配指定条件的行数。 语法: 1.返回指定列的字段值条数 SELECT COUNT(column_name) FROM table_name;2.返回整表数据行条数 SELECT COUNT(*) FROM table_name;3.返回指定列去重后的字段值条数 SELECT COUNT(DISTINCT column_…

Leetcode 第 372 场周赛题解

Leetcode 第 372 场周赛题解 Leetcode 第 372 场周赛题解题目1:2937. 使三个字符串相等思路代码复杂度分析 题目2:2938. 区分黑球与白球思路代码复杂度分析 题目3:2939. 最大异或乘积思路代码复杂度分析 题目4:2940. 找到 Alice 和…

vatee万腾的科技奇点:Vatee创新力引领数字未来

在数字时代的涌动潮流中,Vatee万腾显露出一颗科技的奇点之心,其创新力正引领着数字未来的前沿。随着科技不断演进,Vatee万腾敏锐地捕捉到了科技的契机,展现出独特的创新视野,为数字化未来勾勒出了一幅令人瞩目的画卷。…

使用frp搭建内网穿透服务

使用frp搭建内网穿透服务 frp 是一个专注于内网穿透的高性能的反向代理应用,支持 TCP、UDP、HTTP、HTTPS 等多种协议,且支持 P2P 通信。可以将内网服务以安全、便捷的方式通过具有公网 IP 节点的中转暴露到公网。 1.下载frp 下载地址 2.服务端安装 …

[Linux] shell脚本相关知识

一、shell脚本基础 1.1 shell脚本的作用 shell将人类使用的高级语言翻译成二进制,再将二进制翻译成高级语言。换句话就是人类写了一个命令集合,然后用bash去翻译给硬件执行。 linux中常见的shell: bash:基于gun的框架下发展的shell csh:类…

同为科技(TOWE)智能机柜PDU助力上海华为数据中心完善机房末端配电

智能时代加速而来,最大的需求是算力,最关键的基础设施是数据中心。作为一家在信息通信领域拥有多年经验和技术积累的公司,华为在全国多个地区都设有数据中心,如知名的贵州贵安华为云全球总部、内蒙古乌兰察布华为数据中心等&#…

pnpm 管理依赖包是如何节省磁盘空间的?

npm 存在的问题 我们经常使用 npm 来管理 node 项目中的包,从 package.json 中读取配置将依赖下载到本地,以保障项目的正常运行。 当项目数量多时,这样的包管理方式会非常的占用电脑内存。由于每个项目都有属于自己的依赖,每个项…

什么是多域名证书?

多域名证书是指同一个证书中包含多个域名,能够在多个站点之间共享一份证书,实现一个站点对应多个域名的情况。多域名证书非常适合需要跨多个站点部署的应用,例如企业的子站点、博客等。 特点 多域名证书的优点包括以下几个方面:…

【原创】为MybatisPlus增加一个逻辑删除插件,让XML中的SQL也能自动增加逻辑删除功能

前言 看到这个标题有人就要说了,D哥啊,MybatisPlus不是本来就有逻辑删除的配置吗,比如TableLogic注解,配置文件里也能添加如下配置设置逻辑删除。 mybatis-plus:mapper-locations: classpath*:mapper/*.xmlconfiguration:mapUnd…

品牌挑选控价服务商的标准参考

控价是一项需要投入时间精力的工作,品牌可以自主团队去做,但如果涉及数据量太大的时候,还需要开发系统,这样显然会增加非常多的成本,系统开发费用和运维费用都是一笔不小的开支,所以现在很多的品牌会选择找…

澳洲猫罐头到底怎么样呢?我自己亲自喂养过的优质猫罐头分享

猫罐头要符合三点:营养配方完整均衡、原料新鲜优质、生产工艺科学可靠。只有具备这些特点,才是品质上乘的猫罐头。 这三个要点缺一不可,配方不够均衡营养,便无法给猫提供充足的营养、会导致营养不良;原料不够新鲜、优质…