【Pytorch】Visualization of Feature Maps(1)

在这里插入图片描述

学习参考来自

  • CNN可视化Convolutional Features
  • https://github.com/wmn7/ML_Practice/blob/master/2019_05_27/filter_visualizer.ipynb

文章目录

  • filter 的激活值


filter 的激活值

原理:找一张图片,使得某个 layer 的 filter 的激活值最大,这张图片就是能被这个 filter 所检测的对象。

来个案例,流程:

  1. 初始化一张图片, 56X56
  2. 使用预训练好的 VGG16 网络,固定网络参数;
  3. 若想可视化第 40 层 layer 的第 k 个 filter 的 conv, 我们设置 loss 函数为 (-1*神经元激活值);
  4. 梯度下降, 对初始图片进行更新;
  5. 对得到的图片X1.2, 得到新的图片,重复上面的步骤;

其中第五步比较关键,我们可以看到初始化的图片不是很大,只有56X56. 这是因为原文作者在实际做的时候发现,若初始图片较大,得到的特征的频率会较高,即没有现在这么好的显示效果。

import torch
from torch.autograd import Variable
from PIL import Image, ImageOps
import torchvision.transforms as transforms
import torchvision.models as modelsimport numpy as np
import cv2
from cv2 import resize
from matplotlib import pyplot as pltdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")"initialize input image"
sz = 56
img = np.uint(np.random.uniform(150, 180, (3, sz, sz))) / 255  # (3, 56, 56)
img = torch.from_numpy(img[None]).float().to(device)  # (1, 3, 56, 56)"pretrained model"
model_vgg16 = models.vgg16_bn(pretrained=True).features.to(device).eval()
# downloading /home/xxx/.cache/torch/hub/checkpoints/vgg16_bn-6c64b313.pth, 500M+
# print(model_vgg16)
# print(len(list(model_vgg16.children())))  # 44
# print(list(model_vgg16.children()))"get the filter's output of one layer"
# 使用hook来得到网络中间层的输出
class SaveFeatures():def __init__(self, module):self.hook = module.register_forward_hook(self.hook_fn)def hook_fn(self, module, input, output):self.features = output.clone()def close(self):self.hook.remove()layer = 42
activations = SaveFeatures(list(model_vgg16.children())[layer])"backpropagation, setting hyper-parameters"
lr = 0.1
opt_steps = 25 # 迭代次数
filters = 265 # layer 42 的第 265 个 filter,使其激活值最大
upscaling_steps = 13 # 图像放大次数
blur = 3
upscaling_factor = 1.2 # 放大倍率"preprocessing of datasets"
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).view(-1, 1, 1).to(device)
cnn_normalization_std = torch.tensor([0.299, 0.224, 0.225]).view(-1, 1, 1).to(device)"gradient descent"
for epoch in range(upscaling_steps):  # scale the image up up_scaling_steps timesimg = (img - cnn_normalization_mean) / cnn_normalization_stdimg[img > 1] = 1img[img < 0] = 0print("Image Shape1:", img.shape)img_var = Variable(img, requires_grad=True)  # convert image to Variable that requires grad"optimizer"optimizer = torch.optim.Adam([img_var], lr=lr, weight_decay=1e-6)for n in range(opt_steps):optimizer.zero_grad()model_vgg16(img_var)  # forwardloss = -activations.features[0, filters].mean()  # max the activationsloss.backward()optimizer.step()"restore the image"print("Loss:", loss.cpu().detach().numpy())img = img_var * cnn_normalization_std + cnn_normalization_meanimg[img>1] = 1img[img<0] = 0img = img.data.cpu().numpy()[0].transpose(1,2,0)sz = int(upscaling_factor * sz)  # calculate new image sizeimg = cv2.resize(img, (sz, sz), interpolation=cv2.INTER_CUBIC)  # scale image upif blur is not None:img = cv2.blur(img, (blur, blur))  # blur image to reduce high frequency patternsprint("Image Shape2:", img.shape)img = torch.from_numpy(img.transpose(2, 0, 1)[None]).to(device)print("Image Shape3:", img.shape)print(str(epoch), ", Finished")print("="*10)activations.close()  # remove the hookimage = img.cpu().clone()
image = image.squeeze(0)
unloader = transforms.ToPILImage()image = unloader(image)
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
cv2.imwrite("res1.jpg", image)
torch.cuda.empty_cache()"""
Image Shape1: torch.Size([1, 3, 56, 56])
Loss: -6.0634975
Image Shape2: (67, 67, 3)
Image Shape3: torch.Size([1, 3, 67, 67])
0 , Finished
==========
Image Shape1: torch.Size([1, 3, 67, 67])
Loss: -7.8898916
Image Shape2: (80, 80, 3)
Image Shape3: torch.Size([1, 3, 80, 80])
1 , Finished
==========
Image Shape1: torch.Size([1, 3, 80, 80])
Loss: -8.730318
Image Shape2: (96, 96, 3)
Image Shape3: torch.Size([1, 3, 96, 96])
2 , Finished
==========
Image Shape1: torch.Size([1, 3, 96, 96])
Loss: -9.697872
Image Shape2: (115, 115, 3)
Image Shape3: torch.Size([1, 3, 115, 115])
3 , Finished
==========
Image Shape1: torch.Size([1, 3, 115, 115])
Loss: -10.190881
Image Shape2: (138, 138, 3)
Image Shape3: torch.Size([1, 3, 138, 138])
4 , Finished
==========
Image Shape1: torch.Size([1, 3, 138, 138])
Loss: -10.315895
Image Shape2: (165, 165, 3)
Image Shape3: torch.Size([1, 3, 165, 165])
5 , Finished
==========
Image Shape1: torch.Size([1, 3, 165, 165])
Loss: -9.73861
Image Shape2: (198, 198, 3)
Image Shape3: torch.Size([1, 3, 198, 198])
6 , Finished
==========
Image Shape1: torch.Size([1, 3, 198, 198])
Loss: -9.503629
Image Shape2: (237, 237, 3)
Image Shape3: torch.Size([1, 3, 237, 237])
7 , Finished
==========
Image Shape1: torch.Size([1, 3, 237, 237])
Loss: -9.488493
Image Shape2: (284, 284, 3)
Image Shape3: torch.Size([1, 3, 284, 284])
8 , Finished
==========
Image Shape1: torch.Size([1, 3, 284, 284])
Loss: -9.100454
Image Shape2: (340, 340, 3)
Image Shape3: torch.Size([1, 3, 340, 340])
9 , Finished
==========
Image Shape1: torch.Size([1, 3, 340, 340])
Loss: -8.699549
Image Shape2: (408, 408, 3)
Image Shape3: torch.Size([1, 3, 408, 408])
10 , Finished
==========
Image Shape1: torch.Size([1, 3, 408, 408])
Loss: -8.90135
Image Shape2: (489, 489, 3)
Image Shape3: torch.Size([1, 3, 489, 489])
11 , Finished
==========
Image Shape1: torch.Size([1, 3, 489, 489])
Loss: -8.838546
Image Shape2: (586, 586, 3)
Image Shape3: torch.Size([1, 3, 586, 586])
12 , Finished
==========Process finished with exit code 0
"""

得到特征图

请添加图片描述
网上找个图片测试下,看响应是不是最大

测试图片

请添加图片描述

import torch
from torch.autograd import Variable
from PIL import Image, ImageOps
import torchvision.transforms as transforms
import torchvision.models as modelsimport numpy as np
import cv2
from cv2 import resize
from matplotlib import pyplot as pltdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")class SaveFeatures():def __init__(self, module):self.hook = module.register_forward_hook(self.hook_fn)def hook_fn(self, module, input, output):self.features = output.clone()def close(self):self.hook.remove()size = (224, 224)
picture = Image.open("./bird.jpg").convert("RGB")
picture = ImageOps.fit(picture, size, Image.ANTIALIAS)loader = transforms.ToTensor()
picture = loader(picture).to(device)
print(picture.shape)cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).view(-1, 1, 1).to(device)
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).view(-1, 1, 1).to(device)picture = (picture-cnn_normalization_mean) / cnn_normalization_stdmodel_vgg16 = models.vgg16_bn(pretrained=True).features.to(device).eval()
print(list(model_vgg16.children())[40])  # Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
print(list(model_vgg16.children())[41])  # BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
print(list(model_vgg16.children())[42])  # ReLU(inplace=True)layer = 42
filters = 265
activations = SaveFeatures(list(model_vgg16.children())[layer])with torch.no_grad():picture_var = Variable(picture[None])model_vgg16(picture_var)
activations.close()print(activations.features.shape)  # torch.Size([1, 512, 14, 14])# 画出每个 filter 的平均值
mean_act = [activations.features[0, i].mean().item() for i in range(activations.features.shape[1])]
plt.figure(figsize=(7,5))
act = plt.plot(mean_act, linewidth=2.)
extraticks = [filters]
ax = act[0].axes
ax.set_xlim(0, 500)
plt.axvline(x=filters, color="gray", linestyle="--")
ax.set_xlabel("feature map")
ax.set_ylabel("mane activation")
ax.set_xticks([0, 200, 400] + extraticks)
plt.show()"""
torch.Size([3, 224, 224])
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
ReLU(inplace=True)
torch.Size([1, 512, 14, 14])
"""

请添加图片描述

可以看到,265 特征图对该输入的相应最高

总结:实测了其他 layer 和 filter,画出来的直方图中,对应的 filter 相应未必是最高的,不过也很高,可能找的待测图片并不是最贴合设定 layer 的某个 filter 的特征。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/154116.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

66从零开始学Java之集合中的Collection体系

作者&#xff1a;孙玉昌&#xff0c;昵称【一一哥】&#xff0c;另外【壹壹哥】也是我哦 千锋教育高级教研员、CSDN博客专家、万粉博主、阿里云专家博主、掘金优质作者 前言 截止到今天&#xff0c;我们《从零开始学Java系列》的文章已经要到一个新的阶段了。在此之前&#xf…

【网络安全】——区块链安全和共识机制

区块链安全和共识机制 摘要&#xff1a;区块链技术作为一种分布式去中心化的技术&#xff0c;在无需第三方的情况下&#xff0c;使得未建立信任的交易双方可以达成交易。因此&#xff0c;区块链技术近年来也在金融&#xff0c;医疗&#xff0c;能源等多个行业得到了快速发展。然…

卷积、卷积图像操作和卷积神经网络

好多内容直接看书确实很难坚持&#xff0c;就比如这个卷积&#xff0c;书上的一大堆公式和图表直接把人劝退&#xff0c;我觉得一般的学习流程应该是自顶向下&#xff0c;先整体后局部&#xff0c;先把握大概再推敲细节的&#xff0c;上来就事无巨细地展示对初学者来说很痛苦。…

MAX/MSP SDK学习03:Atoms and Messages的使用

今天终于把Message消息选择器看得有点头绪了&#xff0c;主要是这个官方英文文档理解起来有点抽象。 编写IsMatchABC自定义Object&#xff0c;要求&#xff1a; ①若左入口&#xff08;入口0&#xff09;收到 "int" 型消息&#xff0c;则从出口发送数值 "888&q…

51单片机/STM32F103/STM32F407学习1_点亮LED灯

目录&#xff1a; 基础知识单片机从0实现单片机GPIO介绍 参考连接&#xff1a; 野火霸天虎教程 https://doc.embedfire.com/products/link/zh/latest/mcu/stm32/ebf_stm32f407_batianhu_v1_v2/download/stm32f407_batianhu_v1_v2.html x.1 基础知识 x.1.1 指针中的取地址&a…

数据标注:猫目标检测数据集label标签制作

对于猫十二分类数据标注部分&#xff0c;可以使用官方制作的标注软件 下载地址&#xff1a;精灵标注助手-人工智能数据集标注工具 (jinglingbiaozhu.com) 标注图片为150张猫的图片 如下&#xff1a;

java智慧校园信息管理系统源码带微信小程序

一、智慧校园的定义 智慧校园指的是以云计算和物联网为基础的智慧化的校园工作、学习和生活一体化环境。以各种应用服务系统为载体&#xff0c;将教学、科研、管理和校园生活进行充分融合&#xff0c;让校园实现无处不在的网络学习、融合创新的网络科研、透明高效的校务治理、…

适合学校或高校老师、学生学习用的网盘推荐

现代教育中&#xff0c;数字化的教学资源和家长的参与度越来越重要。然而文件传输的问题一直是学校和家长面临的一个挑战&#xff0c;网络限制、U盘病毒和文件管理不便等问题&#xff0c;都对教学质量和家校沟通造成了影响。Zoho WorkDrive企业网盘为学校还有教辅机构提供了一个…

基于单片机智能液位水位监测控制系统设计

**单片机设计介绍&#xff0c; 基于单片机智能液位水位监测控制系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机的智能液位水位监测控制系统可以用来检测和控制液位的高低&#xff0c;并可以用于水泵的控制和自…

键鼠自动化2.0展示

软件介绍&#xff1a;桌面键鼠自动化工具 Qtc 编写&#xff1a; 本软件采用Qt C编写&#xff0c;旨在提供高效、跨平台的桌面键鼠自动化解决方案。Qt C框架的选择确保了软件的稳定性、可靠性&#xff0c;并通过其图形用户界面实现了用户友好的操作体验。 鼠标移动与点击&#…

亚马逊车灯外贸出口CE认证标准办理解析

车灯是车辆夜间行驶在道路照明的工具&#xff0c;也是发出各种车辆行驶信号的提示工具。车灯一般分为前照灯、尾灯、转向灯等。车灯出口欧盟需要办理CE认证。 CE认证是欧盟对进入欧洲市场的产品强制性的认证标志&#xff0c;是指符合欧盟安全、健康、环境保护等标准和要求的产…

中国城镇化时空分异及影响因素数据集(2010-2020)

基于《中国统计年鉴》、各省份统计年鉴及EPS全球统计数据库等相关统计数据&#xff0c;从人居生活、人文环境、人城关系等维度界定了城镇化内涵框架与指标体系&#xff0c;利用改进的熵值法计算综合评价指数&#xff0c;并运用泰尔指数、方差分解及地理探测器等方法&#xff0c…

【Android Jetpack】理解ViewModel

文章目录 ViewModel实现ViewModelViewModel的生命周期在Fragments间分享数据ViewModel和SavedInstanceState对比ViewModel原理ViewModel与AndroidViewModel ViewModel Android系统提供控件&#xff0c;比如Activity和Fragment&#xff0c;这些控件都是具有生命周期方法&#x…

Playcanvas后处理-辉光bloom

&#xff08;一&#xff09;Bloom介绍 Bloom&#xff08;辉光、光晕、泛光&#xff09;是一种常见的摄像机后处理&#xff08;PostProcessing&#xff09;效果&#xff0c;用于再现真实世界相机的成像伪影。这种效果会产生从图像中明亮区域边界延伸的光条纹&#xff08;或羽毛…

Altium Designer学习笔记2

原理图的绘制 需要掌握的是系统自带原理图库元件的添加。

[WUSTCTF 2020]level2 脱壳

这里我们发现ida打开后是有报错的 所以猜测是否有壳 所以我们去看看是否有壳 发现去壳了 然后再放到IDA中看即可

Atlassian发布最新补贴政策,Jira/Confluence迁移上云最低可至零成本

到2024年2月15日&#xff0c;Atlassian将不再提供对Jira、Confluence、Jira Service Management等Server版产品的支持。 近期&#xff0c;Atlassian推出了一项针对云产品的特殊优惠。现在从Server版迁移到云版&#xff0c;您能享受到高额补贴&#xff0c;甚至成本低至零元。立…

Odoo:行业领先的免费开源财务管理解决方案

面向现代企业的财务和会计软件 可靠关账&#xff0c;更快速、更准确地报告财务数据 Odoo ERP财务和会计软件可帮助财务主管设计、革新和理顺财务流程和运营。Odoo ERP无缝整合各种核心财务和会计功能&#xff0c;提供强大的合规管理特性&#xff0c;有助于企业改善业务绩效、提…

Selenium4+python被单独定义<div>的动态输入框和二级下拉框要怎么定位?

今天在做练习题的时候,发现几个问题捣鼓了好久,写下这篇来记录 问题一: 有层级的复选框无法定位到二级目录 对于这种拥有二级框的选项无法定位,也不是<select>属性. 我们查看下HTML,发现它是被单独封装在body内拥有动态属性的独立<div>,当窗口点击的时候才会触发…

十六、RabbitMQ快速入门

目录 一、在centos上下载MQ镜像 二、安装运行容器 三、登录进入MQ 1、添加一个新的用户 2、新建虚拟机 3、 为用户分配权限 四、RabbitMQ的基本概念 RabbitMQ中的几个概念: 五、常见消息模型 六、简单的消息生产与消费 1、消费者类 2、生产者类 3、基本消息队列的消…