往期文章:
- 【计算复杂性理论】证明复杂性(Proof Complexity)(一):简介
- 【计算复杂性理论】证明复杂性(二):归结(Resolution)与扩展归结(Extended Resolution)证明系统
- 【计算复杂性理论】证明复杂性(三):弗雷格(Frege)与扩展弗雷格(Extended Frege)证明系统
- 【计算复杂性理论】证明复杂性(四):相继式演算(Sequent Calculus)
- 【计算复杂性理论】证明复杂性(五):量化命题演算(Quantified Propositional Calculus)
- 【计算复杂性理论】证明复杂性(六):其他证明系统简介
- 【计算复杂性理论】证明复杂性(七):有界算术(Bounded Arithmetic)与IΔ₀理论
文章目录
- 一、命题鸽巢原理
- 二、定理的表述和证明的大体思路
- 二、关键赋值CTA
- 三、半零子句HZC
- 四、相邻的关键赋值
- 五、高复杂度子句
- 六、函数 f ( n ) f(n) f(n)
- 参考文献
1985年,Haken的论文[1]证明了归结证明系统在命题鸽巢原理上有指数级下界,即命题鸽巢原理不存在多项式大小的归结证明。这项发现说明了归结的强度非常弱,而且因为DPLL、CDCL算法对应的证明系统不强于归结,这也说明了DPLL、CDCL算法的时间复杂度是指数级别的。
关于文字、子句、合取范式等术语的定义请见【算法/图论】2-SAT问题详解。
我们规定:对于变量 v v v,子句 C C C如果包含文字 v v v,则称 v v v在 C C C中是以肯定的形式出现的;若包含文字 ¬ v \neg v ¬v,则称 v v v在 C C C中是以否定的形式出现的。
一、命题鸽巢原理
鸽巢原理(pigeonhole principle)是说,如果 n n n个鸽子要飞到 m m m个巢里面, n > m n>m n>m,且每个巢最多只能有一个鸽子,那么这一定是不可能的。在国内对应的叫法是抽屉原理。
命题鸽巢原理(propositional pigeonhole principle)就是鸽巢原理表示成命题公式的形式。这篇文章只讨论 m = n − 1 m=n-1 m=n−1,即巢比鸽子少一个的情况。定义变量 P i k ( 1 ≤ i ≤ n , 1 ≤ k ≤ n − 1 ) P_{ik}\ (1\le i\le n,1\le k\le n-1) Pik (1≤i≤n,1≤k≤n−1)表示编号为 i i i的鸽子飞进编号为 k k k的巢里。定义命题公式 P H P n n − 1 \mathrm{PHP}_{n}^{n-1} PHPnn−1为下列公式的合取:
- P i 1 ∨ P i 2 ∨ ⋯ ∨ P i , n − 1 P_{i1}\lor P_{i2}\lor\cdots\lor P_{i,n-1} Pi1∨Pi2∨⋯∨Pi,n−1, 1 ≤ i ≤ n 1\le i\le n 1≤i≤n
- ¬ P i k ∨ ¬ P j k \neg P_{ik}\lor\neg P_{jk} ¬Pik∨¬Pjk, 1 ≤ i < j ≤ n 1\le i<j\le n 1≤i<j≤n, 1 ≤ k ≤ n − 1 1\le k\le n-1 1≤k≤n−1
P H P n n − 1 \mathrm{PHP}_{n}^{n-1} PHPnn−1表示的就是 n n n个鸽子可以飞到 m m m个巢里面并且每个巢里只有不超过一个鸽子。第一条表示每个鸽子必须飞到至少一个巢里面;第二条表示任两个鸽子不能飞到同一个巢里面,这样就保证了每个巢里的鸽子数量小于 2 2 2。我们不必限制每个鸽子只能飞到一个巢里面,因为如果一个鸽子飞到超过一个巢里面了,其他鸽子的空间就更小了。显然, P H P n n − 1 \mathrm{PHP}_{n}^{n-1} PHPnn−1是不可满足的(即 ¬ P H P n n − 1 \neg\mathrm{PHP}_{n}^{n-1} ¬PHPnn−1是永真式),而我们要讨论的就是用归结证明系统反驳 P H P n n − 1 \mathrm{PHP}_{n}^{n-1} PHPnn−1的复杂性。
二、定理的表述和证明的大体思路
定理(Haken 1985[1]) 存在一个常数 c > 1 c>1 c>1,使得对于充分大的 n n n, P H P n n − 1 \mathrm{PHP}_{n}^{n-1} PHPnn−1的任何归结反驳都包含至少 c n c^n cn个不同的子句。
证明思路:对于某个固定的 n n n,假设我们有 P H P n n − 1 \mathrm{PHP}_{n}^{n-1} PHPnn−1的一个归结反驳 R R R。在接下来的证明中,我们令 k = ⌊ n − 1 4 ⌋ k=\left\lfloor\frac{n-1}{4}\right\rfloor k=⌊4n−1⌋。
我们可以把变量表示成表格的形式。每行对应同一只鸽子,每列对应同一个巢。比如 P H P 3 2 \mathrm{PHP}_{3}^{2} PHP32的变量表格如下:
鸽子\巢 | 1 1 1 | 2 2 2 |
---|---|---|
1 1 1 | P 11 P_{11} P11 | P 12 P_{12} P12 |
2 2 2 | P 21 P_{21} P21 | P 22 P_{22} P22 |
3 3 3 | P 31 P_{31} P31 | P 32 P_{32} P32 |
定义 F S 1 \mathrm{FS}1 FS1是满足所有下列条件的集合:它包含 P H P n n − 1 \mathrm{PHP}_{n}^{n-1} PHPnn−1的 k k k个变量,且没有两个变量在表格中处于同一行或同一列。令 h ( n ) h(n) h(n)是 F S 1 \mathrm{FS}1 FS1中的元素个数。对于 F S 1 \mathrm{FS}1 FS1中的每个变量集合 S S S,我们在 R R R中找到一个对应的“高复杂度子句”(highly complex clause, HCC)。我们定义一个函数 g ( n ) g(n) g(n)并证明任何一个高复杂度子句至多对应 F S 1 \mathrm{FS}1 FS1中的 g ( n ) g(n) g(n)个元素。因此, R R R中至少包含 f ( n ) = h ( n ) g ( n ) f(n)=\cfrac{h(n)}{g(n)} f(n)=g(n)h(n)个不同的子句。我们将会证明 f ( n ) f(n) f(n)是指数函数。∎
接下来,我们填补这个证明的详细内容。
二、关键赋值CTA
我们按如下方式定义关键赋值(critical truth assignment, CTA):考虑为变量表格的每一格赋 0 0 0和 1 1 1,如果除了某一行变量的赋值全为 0 0 0(称这一行为零行)外,其余格子的赋值满足:每一行恰有一个 1 1 1、每一列也恰有一个 1 1 1,那么称这个赋值为关键赋值。比如下面这个例子,鸽子的数量为 4 4 4,第三行为零行:
鸽子\巢 | 1 1 1 | 2 2 2 | 3 3 3 |
---|---|---|---|
1 1 1 | 1 1 1 | 0 0 0 | 0 0 0 |
2 2 2 | 0 0 0 | 0 0 0 | 1 1 1 |
3 3 3 | 0 \color{red}0 0 | 0 \color{red}0 0 | 0 \color{red}0 0 |
4 4 4 | 0 0 0 | 1 1 1 | 0 0 0 |
实际上就是给除了第三只鸽子外的其他鸽子安排了合适的巢。关键赋值的含义就是舍弃其中一个鸽子,给其他鸽子分别找到一一对应的巢。关键赋值有 n ! n! n!个(舍弃一只鸽子有 n n n种方案,其他鸽子与巢一一对应有 ( n − 1 ) ! (n-1)! (n−1)!种方案)。令 C T A \mathcal{CT\!\!A} CTA为所有关键赋值的集合,每个关键赋值会使 P H P n n − 1 \mathrm{PHP}_{n}^{n-1} PHPnn−1中的一个子句为假,那就是规定了零行对应的鸽子至少应该飞进一个巢的子句。上面这个例子中为假的子句就是 P 31 ∨ P 32 ∨ P 33 P_{31}\lor P_{32}\lor P_{33} P31∨P32∨P33。
如果一个关键赋值 V V V中第 r r r行 c c c列为 1 1 1,则称行 r r r和列 c c c关于 V V V相对应。零行不与任何列相对应。上面的例子中,行 1 1 1、 2 2 2、 3 3 3分别与列 1 1 1、 3 3 3、 2 2 2对应。
三、半零子句HZC
定义归结反驳 R R R中的半零子句(half zero clause, HZC)为任何满足下列条件的子句 C C C:存在某一行(称为关键行),使得 C C C包含这一行的恰好 2 k 2k 2k个变量,这 2 k 2k 2k个变量以肯定的形式出现在 C C C中。比如当 n = 5 n=5 n=5时, k = 1 k=1 k=1,那么 P 22 ∨ ¬ P 43 ∨ P 51 ∨ P 53 P_{22}\lor\neg P_{43}\lor P_{51}\lor P_{53} P22∨¬P43∨P51∨P53就是一个半零子句,第 5 5 5行是关键行。对于一个关键赋值 V V V和半零子句 C C C,如果 C C C的关键行就是 V V V的零行,而且 C C C在赋值 V V V下的取值为假,那么我们就称 C C C代表(present) V V V。我们令所有半零子句构成的集合为 H Z C \mathcal{HZC} HZC。
引理1 若 C C C代表 V V V,则 C C C在变量表格的每行和每列中至多有一个以否定的形式出现的变量;特别地, C C C的关键行没有以否定的形式出现的变量。
证明:只用证前半句话。由于 C C C是一个子句(即简单析取式),要让它为假,必须让其中每个文字的赋值为 0 0 0。显然, C C C中关键行的文字的赋值是为 0 0 0的;因此只需考虑非关键行。如果 P i k P_{ik} Pik在 V V V下的赋值为 0 0 0,那么该变量如果在 C C C中出现,要让 C C C不可满足, P i k P_{ik} Pik只能以肯定的形式出现。只有在 V V V下的赋值为 1 1 1的变量才能以否定的形式出现。而 V V V中每行、每列至多只有一个变量赋值为 1 1 1,因此 C C C在每行、每列至多有一个以否定的形式出现的变量。∎
引理2 每个关键赋值至少被一个半零子句代表。
证明:对于一个关键赋值 V V V,我们重点要证明一个归结反驳 R R R中必须出现一个能够代表 V V V的半零子句。令 q q q是 V V V的零行对应的鸽子的编号(即编号为 q q q个鸽子在赋值 V V V下是无家可归的)。这里会用到一个事实:如果子句 C , D C,D C,D归结的结果是 E E E,那么使 E E E为假的赋值必使 C C C或 D D D为假。这是因为, E E E是 C ∧ D C\land D C∧D的推论,使 C ∧ D C\land D C∧D为真的赋值必然使 E E E为真,而 E E E为假,所以 C ∧ D C\land D C∧D为假,即 C C C或 D D D为假。因此,如果关键赋值 V V V使某个子句 E E E为假,而 E E E又是 C , D C,D C,D归结得到的,那么 V V V必然使 C , D C,D C,D中的至少一个为假。由于空子句是 R R R的最后一个子句,关键赋值一定使空子句为假,故可以令 E E E为空子句。假设我们站在 E E E上,而 V V V使 C C C为假,那我们就跳到 C C C处;如果 C C C是 F , G F,G F,G归结而来而 V V V使 F F F为假,我们就跳到 F F F处;一直这样追根溯源,每次我们所到的子句在 V V V下的取值都为假,直到跳到 P H P n n − 1 \mathrm{PHP}_{n}^{n-1} PHPnn−1的一个子句为止。根据引理1,这个子句必然是 P i 1 ∨ P i 2 ∨ ⋯ ∨ P i , n − 1 P_{i1}\lor P_{i2}\lor\cdots\lor P_{i,n-1} Pi1∨Pi2∨⋯∨Pi,n−1的形式(另一种子句一行有两个否定出现的变量,不可能在 V V V下赋值为假)。要让这种形式的子句为假,就要求其包含的变量的赋值全为 0 0 0。而 V V V只有第 q q q行赋值全为 0 0 0,所以这个子句一定是 P q 1 ∨ P q 2 ∨ ⋯ ∨ P q , n − 1 P_{q1}\lor P_{q2}\lor\cdots\lor P_{q,n-1} Pq1∨Pq2∨⋯∨Pq,n−1。现在考虑从 P q 1 ∨ P q 2 ∨ ⋯ ∨ P q , n − 1 P_{q1}\lor P_{q2}\lor\cdots\lor P_{q,n-1} Pq1∨Pq2∨⋯∨Pq,n−1到 E E E的归结路径。每次归结,子句中有一个变量被消除,同时可能有其他文字被加进来。对于第 q q q行,每次至多有一个变量被消除,同时可能有其他出现形式为肯定的变量加进来。第 q q q行永远不会出现形式为否定的变量,因为 V V V对第 q q q行所有变量的赋值为 0 0 0。 E E E是空子句,不含任何变量,所以在归结路径上子句中第 q q q行的变量个数从 n − 1 n-1 n−1开始到 0 0 0结束,中间有增有减,不过减的时候最多减 1 1 1。因此,总有一时刻使得第 q q q行的变量个数恰为 2 k 2k 2k,这个子句就代表 V V V的半零子句。∎
如果一个子句 D D D经历若干次归结后得到子句 C C C,则称 D D D是 C C C的一个前驱子句。
引理3 设 R R R中有子句 C C C在关键赋值 V V V下的取值为假,且 V V V的零行为第 q q q行。则要么 C C C中至少包含 2 k 2k 2k个以肯定的形式出现的第 q q q行的变量,要么 C C C的某个前驱子句 D D D是半零子句且代表 V V V。
证明提要:还是考虑第 q q q行的变量个数。如果 C C C中包含的第 q q q行的变量个数小于 2 k 2k 2k,因为归结的过程中第 q q q行的变量个数每次至多减 1 1 1,所以一定有某个前驱子句 D D D中第 q q q行的变量个数是 2 k 2k 2k。∎
四、相邻的关键赋值
设 V V V和 W W W是两个关键赋值,并设 q , r q,r q,r分别是 V V V和 W W W关键行的编号。如果 W W W是 V V V交换 q , r q,r q,r两行的结果,则称 W W W和 V V V是相邻的。我们说 W W W是 V V V的 r r r-邻居, V V V是 W W W的 q q q-邻居。
引理4 设半零子句 C C C代表关键赋值 V V V,其中 V V V的零行为第 q q q行。设 r r r是不同于第 q q q行的一行,并设列 s s s和行 r r r关于 V V V对应(即 V V V给 P r s P_{rs} Prs赋值为 1 1 1)。假设 P q s P_{qs} Pqs在 C C C中不以肯定的形式出现(可以不出现), P r s P_{rs} Prs在 C C C中不以否定的形式出现(可以不出现),则 V V V的 r r r-邻居 W W W使 C C C的取值为假。
证明: V V V的第 r r r行只给一个变量 P r s P_{rs} Prs赋值为 1 1 1,因此 V V V和 W W W只有对 P q s P_{qs} Pqs、 P r s P_{rs} Prs的赋值有区别。考虑变量 P q s P_{qs} Pqs,它在 C C C中不以肯定的形式出现,那它要么不出现、要么以否定的形式出现。但是如果它以否定的形式出现,那么由于 V V V给 P q s P_{qs} Pqs的赋值为 0 0 0(这是因为 q q q是零行), C C C就被满足了,所以 P q s P_{qs} Pqs只能在 C C C中不出现。同理, P r s P_{rs} Prs要么不出现、要么以肯定的形式出现,但 V V V给 P q s P_{qs} Pqs的赋值为 1 1 1,所以只能不出现。因此, P q s P_{qs} Pqs和 P r s P_{rs} Prs在 C C C中均不出现,而 V V V和 W W W赋值的差异仅仅在于这两个变量,所以把 V V V换成 W W W对 C C C没有影响,因此 W W W使 C C C的取值为假。∎
五、高复杂度子句
高复杂度子句(highly complex clause, HCC)组成的集合 H C C \mathcal{HCC} HCC是半零子句组成的集合 H Z C \mathcal{HZC} HZC的一个子集。其具体定义将会在下面给出。
回想一下: F S 1 \mathrm{FS}1 FS1是所有 k k k个变量的集合 S S S的集合,使得 S S S中没有两个变量在同一行或同一列。我们给 F S 1 \mathrm{FS}1 FS1中的每一个集合 S S S分配一个半零子句 C S C_S CS。首先,定义 S S S- C T A \mathcal{CT\!\!A} CTA为给 S S S中每个变量赋值为 1 1 1的关键赋值的集合。( F S 1 \mathrm{FS}1 FS1代表“fixed set of 1’s”,即 S S S限定了关键赋值中的 k k k个取值为 1 1 1的变量)。接下来,令 S S S- H Z C \mathcal{HZC} HZC是所有能够代表 S S S- C T A \mathcal{CT\!\!A} CTA中某一关键赋值的半零子句 C C C的集合。根据引理2,集合 S S S- H Z C \mathcal{HZC} HZC非空。令 C S C_S CS是 S S S- H Z C \mathcal{HZC} HZC中第一个在 R R R中出现的子句。可以这么理解:对于集合 S S S,找出所有使 S S S中变量赋值为 1 1 1的关键赋值,再找出所有能代表这其中某一关键赋值的半零子句,取其中在 R R R中最早出现的子句即为 C S C_S CS。注意, C S C_S CS的任何前驱子句都不可能出现在 S S S- H Z C \mathcal{HZC} HZC中。令 H C C = { C S ∣ S ∈ F S 1 } \mathcal{HCC}=\{C_S|S\in\mathrm{FS}1\} HCC={CS∣S∈FS1}。
引理5 每个高复杂度子句都有至少 k + 1 k+1 k+1行,其中每行包含一个以否定形式出现的变量或至少 2 k 2k 2k个以肯定形式出现的变量。
证明:
- 设 S ∈ F S 1 S\in\mathrm{FS}1 S∈FS1并设 C S C_S CS是对应的高复杂度子句。设 V V V是被 C S C_S CS代表的关键赋值,并设 V V V的零行是第 q q q行。由于 C S C_S CS是半零子句,变量表格第 q q q行有 2 k 2k 2k个变量在 C S C_S CS中以肯定的形式出现,并且表格的 k k k列有变量出现在 C S C_S CS中。抛开这些列,还剩 n − 1 − 3 k ≥ k n-1-3k\ge k n−1−3k≥k列(称为“好列”),好列的第 q q q行的变量不在 C S C_S CS中出现而且不包含在 S S S中出现的变量。每个好列关于 V V V对应于一个行,称为“好行”。(好行的定义)
- 设 r r r是一个好行,且令列 s s s和行 r r r关于 V V V相对应。要么有第 r r r行的某个变量在 C S C_S CS中以否定的形式出现,要么 C S C_S CS代表 V V V的 r r r-邻居 W W W(根据引理4,如果第 r r r行的所有变量都不以否定的形式在 C S C_S CS中出现,再结合好列 s s s第 q q q行的变量 P q s P_{qs} Pqs不在 C S C_S CS中出现,那么 C S C_S CS就代表 V V V的 r r r-邻居 W W W)。(好列的定义,引入 r r r-邻居 W W W)
- 现在处理 C S C_S CS代表 W W W的情况。
- 因为 V ∈ S V\in S V∈S- C T A \mathcal{CT\!\!A} CTA,所以 S S S中的每个变量必须在 V V V中的赋值为 1 1 1。因此,第 q q q行的变量都不出现在 S S S中。第 r r r行的变量也都不出现在 S S S中,因为第 r r r行和第 s s s列对应,第 r r r行如果有 S S S中的变量也一定是 P r s P_{rs} Prs,但第 s s s列是好列,所以不含 S S S中的变量。这也就意味着,在 V V V中交换 q q q、 r r r两行不改变 S S S中变量的赋值。所以, W ∈ S W\in S W∈S- C T A \mathcal{CT\!\!A} CTA。(证明 W ∈ S W\in S W∈S- C T A \mathcal{CT\!\!A} CTA)
- 由于 C S C_S CS是 S S S- H Z C \mathcal{HZC} HZC中第一个出现在 R R R中的子句,而所有代表 W W W的子句在 S S S- H Z C \mathcal{HZC} HZC中,因此 C S C_S CS的任何前驱子句都不能代表 W W W。 W W W的零行为第 r r r行, C S C_S CS代表 W W W,用 C S C_S CS和 W W W套用引理3(注意“要么-要么”的第二个要么不成立,所以只有第一个要么成立),得:第 r r r行必然有 2 k 2k 2k个变量以肯定的形式在 C S C_S CS中出现。(分析 C S C_S CS代表 W W W的情况下好行的性质)
- 回顾绿色句子,可知所有好行满足引理5中的条件。所以,第 q q q行和所有的好行构成了引理5中提到的 k + 1 k+1 k+1行。(得到引理5中提到的 k + 1 k+1 k+1行)
示意图:
六、函数 f ( n ) f(n) f(n)
回顾一下 h ( n ) = ∣ F S 1 ∣ h(n)=|\mathrm{FS}1| h(n)=∣FS1∣。 F S 1 \mathrm{FS}1 FS1中的每个元素都对应一个高复杂度子句,但这个映射不一定是单射。我们需要给出一个高复杂度子句对应的 F S 1 \mathrm{FS}1 FS1中的元素的个数上界,该上界即为 g ( n ) g(n) g(n)。
设 C ∈ H C C C\in\mathcal{HCC} C∈HCC。若 C C C是对应于 F S 1 \mathrm{FS}1 FS1中某个元素 S S S的 C S C_S CS,那么 S S S中的变量在 C C C中要么不出现,要么以否定的形式出现(注意 C S C_S CS代表了 S S S- C T A \mathcal{CT\!\!A} CTA中的某个关键赋值,而这个关键赋值对 S S S中元素的赋值为 1 1 1)。根据引理1, C S C_S CS每行至多只有一个以否定形式出现的变量。我们用 C C C的复杂性来限制在 F S 1 \mathrm{FS}1 FS1中选择 S S S使得 C = C S C=C_S C=CS的方案数。为了得到 g ( n ) g(n) g(n),我们数出给 P H P n n − 1 \mathrm{PHP}_{n}^{n-1} PHPnn−1的变量赋 k k k个 1 1 1的方案数,这些方案使得没有两个赋值为 1 1 1的变量在同一行或同一列, C C C中以肯定形式出现的变量赋值为 0 0 0,且如果某一行的一个变量在 C C C中以否定形式出现,则这个变量是这一行唯一可以赋值为 1 1 1的变量。每个这种赋 k k k个 1 1 1的方法对应 F S 1 \mathrm{FS}1 FS1中的一个 S S S。
设 A A A是引理5中提到的 C C C的 k + 1 k+1 k+1行,其中每行包含一个以否定形式出现的变量或至少 2 k 2k 2k个以肯定形式出现的变量。对于 A A A的每一行,我们至多可以给其中 n − 1 − 2 k n-1-2k n−1−2k个变量赋值为 1 1 1(如果该行有一个以否定形式出现的变量,则只能赋一个 1 1 1;如果有 2 k 2k 2k个以肯定形式出现的变量,则可以赋 n − 1 − 2 k n-1-2k n−1−2k个 1 1 1)。当我们赋 k k k个 1 1 1的时候,存在一个数 i i i使得其中 i i i个 1 1 1是在 A A A的 k + 1 k+1 k+1行中出现的,剩余 k − i k-i k−i个 1 1 1是在除 A A A之外的剩下 n − k − 1 n-k-1 n−k−1行中出现的。 i i i可以是 0 0 0到 i i i的任意值。给定一个 i i i,有 d i d_i di种方法选择含有 1 1 1的行,其中 d i = C k + 1 i C n − k − 1 k − i d_i=C_{k+1}^{i} C_{n-k-1}^{k-i} di=Ck+1iCn−k−1k−i。对于 A A A中的 i i i行,我们有至多 ( n − 1 − 2 k ) i {(n-1-2k)}^i (n−1−2k)i中方法选择 1 1 1出现在哪一列(这个界很松,虽然我们应该考虑列不能重复,但我们不知道能选的 n − 1 − 2 k n-1-2k n−1−2k列究竟是哪些列,所以也就无法避免重复的列了)。对于不在 A A A中的行,我们至多有 A n − 1 − i k − i = ( n − 1 − i ) ! ( n − 1 − k ) ! A_{n-1-i}^{k-i}=\cfrac{(n-1-i)!}{(n-1-k)!} An−1−ik−i=(n−1−k)!(n−1−i)!种选法来选择 1 1 1出现在哪一列,因为每一列只能用一次。所以, g ( n ) = ∑ i = 0 k d i ( n − 1 − 2 k ) i ( n − 1 − i ) ! ( n − 1 − k ) ! g(n)=\sum\limits_{i=0}^k d_i{(n-1-2k)}^i\cfrac{(n-1-i)!}{(n-1-k)!} g(n)=i=0∑kdi(n−1−2k)i(n−1−k)!(n−1−i)!对于 h ( n ) = ∣ F S 1 ∣ h(n)=|\mathrm{FS}1| h(n)=∣FS1∣,考虑选 k k k个行,共有 C n k C_n^k Cnk种选法;再从 n − 1 n-1 n−1列中选 k k k列,共有 A n − 1 k = ( n − 1 ) ! ( n − 1 − k ) ! A_{n-1}^k=\cfrac{(n-1)!}{(n-1-k)!} An−1k=(n−1−k)!(n−1)!种选法。所以 h ( n ) = C n k A n − 1 k = C n k ( n − 1 ) ! ( n − 1 − k ) ! h(n)=C_n^k A_{n-1}^k=C_n^k \cfrac{(n-1)!}{(n-1-k)!} h(n)=CnkAn−1k=Cnk(n−1−k)!(n−1)!利用组合数恒等式 C n k = ∑ i = 0 k C k + 1 i C n − k − 1 k − i = ∑ i = 0 k d i C_n^k=\sum\limits_{i=0}^{k} C_{k+1}^{i} C_{n-k-1}^{k-i}=\sum\limits_{i=0}^{k} d_i Cnk=i=0∑kCk+1iCn−k−1k−i=i=0∑kdi(可理解为:先在 k + 1 k+1 k+1个中选 i i i个,再在 n − k − 1 n-k-1 n−k−1个中选 k − i k-i k−i个),我们得到 h ( n ) = ∑ i = 0 k d i ( n − 1 ) ! ( n − 1 − i ) ! ( n − 1 − i ) ! ( n − 1 − k ) ! h(n)=\sum\limits_{i=0}^{k} d_i\cfrac{(n-1)!}{(n-1-i)!}\cfrac{(n-1-i)!}{(n-1-k)!} h(n)=i=0∑kdi(n−1−i)!(n−1)!(n−1−k)!(n−1−i)!所以 f ( n ) = h ( n ) g ( n ) = ∑ i = 0 k d i ∑ i = 0 k d i ( n − 1 − i ) ! ( n − 1 − 2 k ) i ( n − 1 ) ! f(n)=\cfrac{h(n)}{g(n)}=\cfrac{\sum\limits_{i=0}^{k} d_i}{\sum\limits_{i=0}^{k} d_i\cfrac{(n-1-i)!{(n-1-2k)}^i}{(n-1)!}} f(n)=g(n)h(n)=i=0∑kdi(n−1)!(n−1−i)!(n−1−2k)ii=0∑kdi令 n ≥ 201 n\ge 201 n≥201。考虑放大 ( n − 1 − i ) ! ( n − 1 − 2 k ) i ( n − 1 ) ! \cfrac{(n-1-i)!{(n-1-2k)}^i}{(n-1)!} (n−1)!(n−1−i)!(n−1−2k)i。当 i ≤ k i\le k i≤k时, n − 1 − 2 k n − 1 − i ≤ n − 1 − 2 k n − 1 − k ≤ 2 k + 1 3 k < 1 1.49 \cfrac{n-1-2k}{n-1-i}\le\cfrac{n-1-2k}{n-1-k}\le\cfrac{2k+1}{3k}<\cfrac{1}{1.49} n−1−in−1−2k≤n−1−kn−1−2k≤3k2k+1<1.491,故 ( n − 1 − 2 k ) i ≤ ( n − 1 − i ) i 1.49 i {(n-1-2k)}^i\le\cfrac{{(n-1-i)}^i}{{1.49}^i} (n−1−2k)i≤1.49i(n−1−i)i。因此 ( n − 1 − i ) ! ( n − 1 − 2 k ) i ( n − 1 ) ! ≤ ( n − 1 − i ) ! ( n − 1 ) i ( n − 1 ) ! 1.49 i = ( n − i ) ⋅ ( n − i ) ⋅ ⋯ ⋅ ( n − i ) ( n − 1 ) ⋅ ( n − 2 ) ⋅ ⋯ ⋅ ( n − i ) 1 1.49 i ≤ 1 ⋅ 1 1.49 i = 1 1.49 i \cfrac{(n-1-i)!{(n-1-2k)}^i}{(n-1)!}\le\cfrac{(n-1-i)!{(n-1)}^i}{(n-1)!{1.49}^i}=\cfrac{(n-i)\cdot(n-i)\cdot\cdots\cdot(n-i)}{(n-1)\cdot(n-2)\cdot\cdots\cdot(n-i)}\cfrac{1}{{1.49}^i}\le 1\cdot\cfrac{1}{{1.49}^i}=\cfrac{1}{{1.49}^i} (n−1)!(n−1−i)!(n−1−2k)i≤(n−1)!1.49i(n−1−i)!(n−1)i=(n−1)⋅(n−2)⋅⋯⋅(n−i)(n−i)⋅(n−i)⋅⋯⋅(n−i)1.49i1≤1⋅1.49i1=1.49i1。于是我们有 f ( n ) > ∑ i = 0 k d i ∑ i = 0 k d i 1.49 i ( ∗ ) f(n)>\cfrac{\sum\limits_{i=0}^{k} d_i}{\sum\limits_{i=0}^{k} \cfrac{d_i}{{1.49}^i}}\qquad(*) f(n)>i=0∑k1.49idii=0∑kdi(∗)令 m = ⌊ n − 1 50 ⌋ m=\left\lfloor\cfrac{n-1}{50}\right\rfloor m=⌊50n−1⌋。当 i + 1 ≤ 2 m i+1\le 2m i+1≤2m时, d i + 1 d i = ( k + 1 − i ) ( k − i ) ( i + 1 ) ( n − 2 k + i ) > [ ( n − 1 ) / 5 ] [ ( n − 1 ) / 5 ] [ ( n − 1 ) / 25 ] [ 0.6 ( n − 1 ) ] > 1.5 \cfrac{d_{i+1}}{d_i}=\cfrac{(k+1-i)(k-i)}{(i+1)(n-2k+i)}>\cfrac{[(n-1)/5][(n-1)/5]}{[(n-1)/25][0.6(n-1)]}>1.5 didi+1=(i+1)(n−2k+i)(k+1−i)(k−i)>[(n−1)/25][0.6(n−1)][(n−1)/5][(n−1)/5]>1.5故 ∑ i = 0 m − 1 d i 1.49 i ≤ ∑ i = m 2 m − 1 d i 1.49 i ( † ) \sum\limits_{i=0}^{m-1}\cfrac{d_i}{{1.49}^i}\le\sum\limits_{i=m}^{2m-1}\cfrac{d_i}{{1.49}^i}\qquad(\dagger) i=0∑m−11.49idi≤i=m∑2m−11.49idi(†)考虑 ( ∗ ) (*) (∗)式不等号右端的分式,记分子为 Φ \Phi Φ,分母为 Ψ \Psi Ψ。对分母 Ψ \Psi Ψ应用 ( † ) (\dagger) (†)式并放大得 Ψ = ∑ i = 0 k d i 1.49 i ≤ ( 2 ∑ i = m 2 m − 1 + ∑ i = 2 m k ) d i 1.49 i < 2 ∑ i = m k d i 1.49 i < 2 ∑ i = m k d i 1.49 m \Psi=\sum\limits_{i=0}^{k} \cfrac{d_i}{{1.49}^i}\le\left(2\sum\limits_{i=m}^{2m-1}+\sum\limits_{i=2m}^{k}\right)\cfrac{d_i}{{1.49}^i}<2\sum\limits_{i=m}^{k}\cfrac{d_i}{{1.49}^i}<2\sum\limits_{i=m}^{k}\cfrac{d_i}{{1.49}^m} Ψ=i=0∑k1.49idi≤(2i=m∑2m−1+i=2m∑k)1.49idi<2i=m∑k1.49idi<2i=m∑k1.49mdi对分母缩小得 Φ = ∑ i = 0 k d i > ∑ i = m k d i \Phi=\sum\limits_{i=0}^{k} d_i>\sum\limits_{i=m}^{k} d_i Φ=i=0∑kdi>i=m∑kdi于是 f ( n ) > ∑ i = m k d i 2 ∑ i = m k d i 1.49 m = 1.49 m 2 > ( 1.49 0.01 ) n f(n)>\cfrac{\sum\limits_{i=m}^k d_i}{2\sum\limits_{i=m}^k\cfrac{d_i}{{1.49}^m}}=\cfrac{{1.49}^m}{2}>{({1.49}^{0.01})}^n f(n)>2i=m∑k1.49mdii=m∑kdi=21.49m>(1.490.01)n所以,对于任意 n ≥ 201 n\ge 201 n≥201, f ( n ) > c n f(n)>c^n f(n)>cn,其中 c = 1.49 0.01 c={1.49}^{0.01} c=1.490.01。
Q.E.D. \text{Q.E.D.} Q.E.D.
值得注意的是,虽然命题鸽巢原理有指数级归结下界,但它有多项式大小的弗雷格证明(Buss 1987[2])和扩展弗雷格证明(Cook 1976[3])。它的指数级归结下界不能说明它太难,只能说明归结证明系统太弱。
参考文献
[1] Haken, Armin. “The Intractability of Resolution.” Theor. Comput. Sci. 39 (1985): 297-308.
[2] Buss, Samuel R. “Polynomial size proofs of the propositional pigeonhole principle.” Journal of Symbolic Logic 52 (1987): 916 - 927.
[3] Cook, Stephen A. “A short proof of the pigeon hole principle using extended resolution.” SIGACT News 8 (1976): 28-32.