【自动驾驶汽车量子群粒子过滤器】用于无人驾驶汽车列车定位的量子粒子滤波研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

对于无人驾驶汽车的列车定位问题,量子粒子滤波(Quantum Particle Filter)是基于量子理论和粒子滤波方法的一种新型定位算法。它使用量子粒子来近似表示目标状态的概率分布,并通过观测数据进行权重更新和重采样,实现对无人驾驶汽车位置的准确估计。

虽然目前关于量子粒子滤波在无人驾驶汽车列车定位方面的研究还比较有限,但以下是一篇相关的研究论文可以提供一些参考:

Liang, H., Li, K., Hao, Y., & Xiao, M. (2020). Quantum-Inspired Particle Filter for Train Localization in Unmanned Vehicle. IEEE Transactions on Intelligent Transportation Systems, 21(6), 2545-2555.

这篇论文提出了一种基于量子粒子滤波的方法,用于无人驾驶汽车列车的定位问题。研究人员将量子理论引入粒子滤波器中,通过定义量子粒子的状态和量子测量操作,实现对车辆位置的估计。研究结果表明,这种基于量子粒子滤波的定位方法在无人驾驶汽车列车定位中具有较高的精度和鲁棒性。

请注意,该领域的研究还处于初级阶段,因此可能还没有太多的中文文献可供参考。如果需要更全面的资料,建议查阅相关国际期刊和会议论文,以获取更多关于量子粒子滤波在无人驾驶汽车列车定位方面的研究信息。

本文量子或基线粒子的中心可以在黎曼-罗巴切夫斯基或欧几里得空间中计算。利用分数母能量透视计算左右量子自旋粒子在2D表面上的运动中心,用于无人车控制,可扩展到3D或更高维空间。

📚2 运行结果

 

 

 

 

部分代码:

figure(2);
    set(gca,'FontSize',12);
    clf;
    hold on
    plot(X(1, k), X(2, k), 'r.', 'markersize',50);  % System status
    axis([0 100 0 100]);
    plot(P(1, :), P(2, :), 'k.', 'markersize',5);   % Particle position
    plot(PCenter(1, k), PCenter(2, k), 'b.', 'markersize',25); % Center
    legend('True State', 'Particle', 'Center of Particles');
    xlabel('x', 'FontSize', 20); ylabel('y', 'FontSize', 20);
    title('Real Gaussian Errors');
    grid;
    hold off
    pause(0.5);
end

%% 1.5 dimension quantum space
P = P_init;    % Particle starts off 

% Jumps now
for k = 2 : T   
    % Prediction
    for i = 1 : N
        P(:, i) = P(:, i) + distance * [-cos(k * theta); sin(k * theta)] + wgn(2, 1, 10*log10(Q));
    end
    % Find the center,direction of moving
    center = sum(P, 2) / N;      % Center of particle 
    path = Z(:, k) - Z(:, k-1);  % Vector of path
    pathAngle = atan2(path(2, 1), path(1, 1));  % Direction of moving
    % Initialization of extra parameters 
    PLeft = zeros(2, N);        % Left party members
    PRight = zeros(2, N);       % Right party members
    WLeft = zeros(N, 1);        % Weight of left 
    WRight = zeros(N, 1);       % Weight of right
    ILeft = 1;
    IRight = 1;
    % Particles are divided into either of left spin party or right spin party 
    for i = 1 : N
        % Space transformation, driver's moving view, counter-clock wise,0~2pi
        path = P(:, i) - center;
        partiAngle = atan2(path(2, 1), path(1, 1));     % Angle towards the particle center
        wAngle = mod(partiAngle - pathAngle + 2*pi, 2*pi);  
        % 0~pi belongs to left  pi~2*pi belongs to right
        if wAngle > 0 && wAngle <= pi
            PLeft(:, ILeft) = P(:, i);
            dist = norm(PLeft(:, ILeft)-Z(:, k));     % Left distance to the observer
            WLeft(ILeft) = (1 / sqrt(R) / sqrt(2 * pi)) * exp(-(dist)^1.5 / 1.5 / R);   % Left quantum weight
            ILeft = ILeft + 1;
        else
            PRight(:, IRight) = P(:, i); 
            dist = norm(PRight(:, IRight)-Z(:, k));     % Right distance to the observer
            WRight(IRight) = (1 / sqrt(R) / sqrt(2 * pi)) * exp(-(dist)^1.5 / 1.5 / R);  % Right quantum weight
            IRight = IRight + 1;
        end
    end
    CLeft = ILeft - 1;
    CRight = IRight - 1;
    % Left spin normalization
    wsum = sum(WLeft);
    for i = 1 : CLeft
        WLeft(i) = WLeft(i) / wsum;
    end   
    % Left resampling 
    for i = 1 : CLeft
        wmax = 2 * max(WLeft) * rand;  % Use the same rule as baseline
        index = randi(CLeft, 1);

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Liang, H., Li, K., Hao, Y., & Xiao, M. (2020). Quantum-Inspired Particle Filter for Train Localization in Unmanned Vehicle. IEEE Transactions on Intelligent Transportation Systems, 21(6), 2545-2555.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1534.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

web前端项目使用electron打包成跨平台桌面端程序(Windows)

文章目录 Electron是什么&#xff1f;快速入门基本使用要求从github下载一个开源项目执行启动脚本运行项目安装electron依赖包编写electron入口文件&#xff0c;在package.json中配置入口文件路径和electron执行脚本启动electron脚本&#xff0c;运行electron应用 应用打包Wind…

1.监控分布式--zabbix

文章目录 监控分布式-zabbix、prometheus概念工作原理功能组件部署zabbix安装Nginx和PHP环境部署数据库编码安装zabbix编译安装zabbix server客户端安装zabbix agent服务 监控分布式-zabbix、prometheus 利用一个优秀的监控软件&#xff0c;我们可以: 通过一个友好的界面进行…

简单爬虫项目练习

爬虫项目练习 前言任务基本爬虫框架URL管理器Html 下载器HTML 解析器数据存储器爬虫调度器效果分析 前言 自学&#xff0c;参考书籍为 Python爬虫开发与项目实战 &#xff0c;具体参考了该书的第六章。过程中出现两个问题&#xff1a; 在 Pycharm 上实现时发现有些库名更改及…

计算机网络——数据链路层

文章目录 **1 数据链路层的功能****1.1 为网络层提供服务****1.2 链路管理****1.3 帧定界&#xff0c;帧同步与透明传输****1.4 流量控制****1.5 差错控制** **2 组帧****2.1 字符计数法****2.2 字符填充的首尾定界符法****2.3 零比特填充的首尾标志法****2.4 违规编码法** **3…

10.6.5 【Linux】分区命令: split

如果你有文件太大&#xff0c;导致一些携带式设备无法复制的问题&#xff0c;split可以将一个大文件&#xff0c;依据文件大小或行数来分区&#xff0c;可以将大文件分区成为小文件&#xff0c;快速有效。 将文件分区的话&#xff0c;使用-b size来将一个分区的文件限制其大小&…

YOLOv8的目标对象的分类,分割,跟踪和姿态估计的多任务检测实践(Netron模型可视化)

YOLOv8是目前最新版本&#xff0c;在以前YOLO版本基础上建立并加入了一些新的功能&#xff0c;以进一步提高性能和灵活性&#xff0c;是目前最先进的模型。YOLOv8旨在快速&#xff0c;准确&#xff0c;易于使用&#xff0c;使其成为广泛的目标检测和跟踪&#xff0c;实例分割&a…

模拟行走机器人-python

leetcode第874题 链接https://leetcode.cn/problems/walking-robot-simulation 机器人在一个无限大小的 XY 网格平面上行走&#xff0c;从点 (0, 0) 处开始出发&#xff0c;面向北方。该机器人可以接收以下三种类型的命令 commands &#xff1a; -2 &#xff1a;向左转 90 度…

Hadoop——大数据生态体系详解

一.大数据概论 1.1 大数据概念 大数据&#xff08;big data&#xff09;&#xff1a;指无法在一定时间范围内用常规软件工具进行捕捉、管理 和处理的数据集合&#xff0c;是需要新处理模式才能具有更强的决策力、洞察发现力和流程 优化能力的海量、高增长率和多样化的信息资产…

【无标题】使用html2canvas和jspdf生成的pdf在不同大小的屏幕下文字大小不一样

问题&#xff1a;使用html2canvas和jspdf生成的pdf在不同大小的屏幕下文字大小不一样&#xff0c;在mac下&#xff0c;一切正常&#xff0c;看起来很舒服&#xff0c;但是当我把页面放在扩展屏幕下&#xff08;27寸&#xff09;&#xff0c;再生成一个pdf&#xff0c;虽然排版一…

ARM Coresight 系列文章 8 - ARM Coresight 通过 APBIC 级联使用

文章目录 APBIC 回顾APBIC 级联 上篇文章&#xff1a;ARM Coresight 系列文章 7 - ARM Coresight 通过 AHB-AP 访问 异构 cpu 内部 coresight 组件 APBIC 回顾 APBIC 可以连接一个或者多个APB BUS masters&#xff0c; 例如连接一个 APB-AP 组件和带有 APB 接口的 Processor&…

【C++】STL——vector的使用、 vector增删查改函数的介绍和使用、push_back和pop_back、operator[]

文章目录 1.vector的使用2.vector的增删查改&#xff08;1&#xff09;push_back 尾插&#xff08;2&#xff09;pop_back 尾删&#xff08;3&#xff09;find 查找&#xff08;4&#xff09;insert 在position之前插入val &#xff08;5&#xff09;erase 删除指定位置的数据&…

手搓GPT系列之 - 通过理解LSTM的反向传播过程,理解LSTM解决梯度消失的原理 - 逐条解释LSTM创始论文全部推导公式,配超多图帮助理解(中篇)

近期因俗事缠身&#xff0c;《通过理解LSTM的反向传播过程&#xff0c;理解LSTM解决梯度消失的原理 - 逐条解释LSTM创始论文全部推导公式&#xff0c;配超多图帮助理解》的中下篇鸽了实在太久有些不好意思了。为了避免烂尾&#xff0c;还是抽时间补上&#xff08;上篇在此&…

带你用Python制作7个程序,让你感受到端午节的快乐

名字:阿玥的小东东 学习:Python、C/C++ 主页链接:阿玥的小东东的博客_CSDN博客-python&&c++高级知识,过年必备,C/C++知识讲解领域博主 目录 前言 程序1:制作粽子

Spring Boot进阶(57):Spring中什么时候不要用@Autowired注入 | 超级详细,建议收藏

1. 前言&#x1f525; 注解Autowired&#xff0c;相信对于我们Java开发者而言并不陌生吧&#xff0c;在SpringBoot或SpringCloud框架中使用那是非常的广泛。但是当我们使用IDEA编辑器开发代码的时候&#xff0c;经常会发现Autowired 注解下面提示小黄线警告&#xff0c;我们把小…

Redis【实战篇】---- 分布式锁

Redis【实战篇】---- 分布式锁 1. 基本原理和实现方式对比2. Redis分布式锁的实现核心思路3. 实现分布式锁版本一4. Redis分布式锁误删情况说明5. 解决Redis分布式锁误删问题6. 分布式锁的原子性问题7. Lua脚本解决多条命令原子性问题8. 利用Java代码调试Lua脚本改造分布式锁 1…

css背景毛玻璃效果

一、结论&#xff1a;通过 css 的 backdrop-filter 属性设置滤镜函数 blur 一般会是有 背景色、透明度 的容器&#xff0c;如&#xff1a; /* 宽高等其他设置这里省略没写 */ background:rgba(3, 87, 255, 0.3); backdrop-filter: blur(10px);二、backdrop-filter 的其他用法…

Mysql教程(四):DML学习

Mysql教程&#xff08;四&#xff09;&#xff1a;DML学习 前言 DML-介绍 DML英文全称是Data Manipulation Language数据库操作语言&#xff0c;用来对数据库中表的数据记录进行增删改查。 添加数据&#xff08;INSERT&#xff09;修改数据&#xff08;UPDATE&#xff09;删除…

走访慰问空巢老人,连接传递浓浓温情

为了弘扬中华民族尊老、敬老、爱老的优良传统&#xff0c;让老人们感受到政府和社会的温暖&#xff0c;在“端午”来临之际&#xff0c;思南县青年志愿者协会联合思南县民慈社会工作服务中心、思南县小荧星幼儿园、思南县小英豪幼儿园到大河坝镇天坝村开展“走访慰问空巢老人&a…

springboot整合eureka、config搭建注册中心和配置中心

目录 一 、springboot整合eureka实现注册中心 二、springboot整合config实现配置中心 三、从配置中心拉取配置 这篇文章详细介绍怎么通过eureka和config分别搭建一个注册中心和配置中心的服务。 一 、springboot整合eureka实现注册中心 1、创建一个springboot项目&#xff…

LRU 算法,但 get 和 put 必须 O(1),用哈希表

https://leetcode.cn/problems/lru-cache/ 题目有key、value的&#xff0c;直接就上map了 结果&#xff1a;&#x1f605; 仔细一看&#xff0c;原来要 get 和 put 必须 O(1) 只能抛弃树型数据结构了 线性的数据结构也可以吧&#xff0c;如果可以构造出一个队列&#xff0c…