RuntimeError: PyPI no longer supports ‘pip search‘ (or XML-RPC search).

RuntimeError: PyPI no longer supports ‘pip search’ (or XML-RPC search).

1. ERROR: XMLRPC request failed

Deprecated Methods
https://warehouse.pypa.io/api-reference/xml-rpc.html#deprecated-methods

PyPI XMLRPC Search Disabled
https://status.python.org/incidents/grk0k7sz6zkp

(base) yongqiang@yongqiang:~$ pip search scikit-learn
ERROR: XMLRPC request failed [code: -32500]
RuntimeError: PyPI no longer supports 'pip search' (or XML-RPC search). Please use https://pypi.org/search (via a browser) instead. See https://warehouse.pypa.io/api-reference/xml-rpc.html#deprecated-methods for more information.
(base) yongqiang@yongqiang:~$

Permanently deprecated and disabled due to excessive traffic driven by unidentified traffic, presumably automated.
由于未知流量驱动的流量过多 (可能是自动化的),因此永久弃用和禁用。

XMLRPC Search has been permanently disabled.

1.1. InconsistentVersionWarning: Trying to unpickle estimator DecisionTreeRegressor from version 0.23.1 when using version 1.3.2.

(base) yongqiang@yongqiang:~$ nn-meter predict --predictor cortexA76cpu_tflite21 --predictor-version 1.0 --tensorflow /home/yongqiang/yongqiang_work/nn-Meter/material/testmodels/mobilenetv3small_0.pb
(nn-Meter) checking local kernel predictors at /home/yongqiang/.nn_meter/data/predictor/cortexA76cpu_tflite21
(nn-Meter) load predictor /home/yongqiang/.nn_meter/data/predictor/cortexA76cpu_tflite21/dwconv-bn-relu.pkl
/home/yongqiang/miniconda3/lib/python3.11/site-packages/sklearn/base.py:348: InconsistentVersionWarning: Trying to unpickle estimator DecisionTreeRegressor from version 0.23.1 when using version 1.3.2. This might lead to breaking code or invalid results. Use at your own risk. For more info please refer to:
https://scikit-learn.org/stable/model_persistence.html#security-maintainability-limitationswarnings.warn(
Traceback (most recent call last):File "/home/yongqiang/miniconda3/bin/nn-meter", line 8, in <module>sys.exit(nn_meter_cli())^^^^^^^^^^^^^^File "/home/yongqiang/miniconda3/lib/python3.11/site-packages/nn_meter/utils/nn_meter_cli/interface.py", line 266, in nn_meter_cliargs.func(args)File "/home/yongqiang/miniconda3/lib/python3.11/site-packages/nn_meter/utils/nn_meter_cli/predictor.py", line 39, in apply_latency_predictor_clipredictor = load_latency_predictor(args.predictor, args.predictor_version)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "/home/yongqiang/miniconda3/lib/python3.11/site-packages/nn_meter/predictor/nn_meter_predictor.py", line 66, in load_latency_predictorkernel_predictors, fusionrule = loading_to_local(pred_info, os.path.join(user_data_folder, 'predictor'))^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "/home/yongqiang/miniconda3/lib/python3.11/site-packages/nn_meter/predictor/utils.py", line 39, in loading_to_localmodel = pickle.load(f)^^^^^^^^^^^^^^File "sklearn/tree/_tree.pyx", line 728, in sklearn.tree._tree.Tree.__setstate__File "sklearn/tree/_tree.pyx", line 1434, in sklearn.tree._tree._check_node_ndarray
ValueError: node array from the pickle has an incompatible dtype:
- expected: {'names': ['left_child', 'right_child', 'feature', 'threshold', 'impurity', 'n_node_samples', 'weighted_n_node_samples', 'missing_go_to_left'], 'formats': ['<i8', '<i8', '<i8', '<f8', '<f8', '<i8', '<f8', 'u1'], 'offsets': [0, 8, 16, 24, 32, 40, 48, 56], 'itemsize': 64}
- got     : [('left_child', '<i8'), ('right_child', '<i8'), ('feature', '<i8'), ('threshold', '<f8'), ('impurity', '<f8'), ('n_node_samples', '<i8'), ('weighted_n_node_samples', '<f8')]
(base) yongqiang@yongqiang:~$

1.2. pip uninstall scikit-learn

(base) yongqiang@yongqiang:~$ pip uninstall scikit-learn
Found existing installation: scikit-learn 1.3.2
Uninstalling scikit-learn-1.3.2:Would remove:/home/yongqiang/miniconda3/lib/python3.11/site-packages/scikit_learn-1.3.2.dist-info/*/home/yongqiang/miniconda3/lib/python3.11/site-packages/scikit_learn.libs/libgomp-a34b3233.so.1.0.0/home/yongqiang/miniconda3/lib/python3.11/site-packages/sklearn/*
Proceed (Y/n)? ySuccessfully uninstalled scikit-learn-1.3.2
(base) yongqiang@yongqiang:~$

1.3. pip search scikit-learn

(base) yongqiang@yongqiang:~$ pip search scikit-learn
ERROR: XMLRPC request failed [code: -32500]
RuntimeError: PyPI no longer supports 'pip search' (or XML-RPC search). Please use https://pypi.org/search (via a browser) instead. See https://warehouse.pypa.io/api-reference/xml-rpc.html#deprecated-methods for more information.
(base) yongqiang@yongqiang:~$

1.4. conda search scikit-learn

使用 conda search scikit-learn 替代 pip search scikit-learn

(base) yongqiang@yongqiang:~$ conda search scikit-learn
Loading channels: done
# Name                       Version           Build  Channel
scikit-learn                  0.19.0 py27_nomklh0ffebdf_2  anaconda/pkgs/main
scikit-learn                  0.19.0  py27hd893acb_2  anaconda/pkgs/main
scikit-learn                  0.19.0 py35_nomklh375dd1d_2  anaconda/pkgs/main
scikit-learn                  0.19.0  py35h25e8076_2  anaconda/pkgs/main
scikit-learn                  0.19.0 py36_nomklh41feb14_2  anaconda/pkgs/main
scikit-learn                  0.19.0  py36h97ac459_2  anaconda/pkgs/main
scikit-learn                  0.19.1 py27_nomklh6479e79_0  anaconda/pkgs/main
scikit-learn                  0.19.1 py27_nomklh6cfcb94_0  anaconda/pkgs/main
scikit-learn                  0.19.1  py27h445a80a_0  anaconda/pkgs/main
scikit-learn                  0.19.1  py27hedc7406_0  anaconda/pkgs/main
scikit-learn                  0.19.1 py35_nomklh26d41a3_0  anaconda/pkgs/main
scikit-learn                  0.19.1  py35hbf1f462_0  anaconda/pkgs/main
scikit-learn                  0.19.1 py36_nomklh27f7947_0  anaconda/pkgs/main
scikit-learn                  0.19.1 py36_nomklh6cfcb94_0  anaconda/pkgs/main
scikit-learn                  0.19.1  py36h7aa7ec6_0  anaconda/pkgs/main
scikit-learn                  0.19.1  py36hedc7406_0  anaconda/pkgs/main
scikit-learn                  0.19.1 py37_nomklh6cfcb94_0  anaconda/pkgs/main
scikit-learn                  0.19.1  py37hedc7406_0  anaconda/pkgs/main
scikit-learn                  0.19.2  py27h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.19.2  py27h4989274_0  anaconda/pkgs/main
scikit-learn                  0.19.2  py35h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.19.2  py35h4989274_0  anaconda/pkgs/main
scikit-learn                  0.19.2  py36h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.19.2  py36h4989274_0  anaconda/pkgs/main
scikit-learn                  0.19.2  py37h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.19.2  py37h4989274_0  anaconda/pkgs/main
scikit-learn                  0.20.0  py27h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.20.0  py27h22eb022_1  anaconda/pkgs/main
scikit-learn                  0.20.0  py27h4989274_0  anaconda/pkgs/main
scikit-learn                  0.20.0  py27h4989274_1  anaconda/pkgs/main
scikit-learn                  0.20.0  py35h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.20.0  py35h22eb022_1  anaconda/pkgs/main
scikit-learn                  0.20.0  py35h4989274_0  anaconda/pkgs/main
scikit-learn                  0.20.0  py35h4989274_1  anaconda/pkgs/main
scikit-learn                  0.20.0  py36h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.20.0  py36h22eb022_1  anaconda/pkgs/main
scikit-learn                  0.20.0  py36h4989274_0  anaconda/pkgs/main
scikit-learn                  0.20.0  py36h4989274_1  anaconda/pkgs/main
scikit-learn                  0.20.0  py37h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.20.0  py37h22eb022_1  anaconda/pkgs/main
scikit-learn                  0.20.0  py37h4989274_0  anaconda/pkgs/main
scikit-learn                  0.20.0  py37h4989274_1  anaconda/pkgs/main
scikit-learn                  0.20.1  py27h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.20.1  py27h4989274_0  anaconda/pkgs/main
scikit-learn                  0.20.1  py27hd81dba3_0  anaconda/pkgs/main
scikit-learn                  0.20.1  py36h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.20.1  py36h4989274_0  anaconda/pkgs/main
scikit-learn                  0.20.1  py36hd81dba3_0  anaconda/pkgs/main
scikit-learn                  0.20.1  py37h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.20.1  py37h4989274_0  anaconda/pkgs/main
scikit-learn                  0.20.1  py37hd81dba3_0  anaconda/pkgs/main
scikit-learn                  0.20.2  py27h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.20.2  py27hd81dba3_0  anaconda/pkgs/main
scikit-learn                  0.20.2  py36h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.20.2  py36hd81dba3_0  anaconda/pkgs/main
scikit-learn                  0.20.2  py37h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.20.2  py37hd81dba3_0  anaconda/pkgs/main
scikit-learn                  0.20.3  py27h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.20.3  py27hd81dba3_0  anaconda/pkgs/main
scikit-learn                  0.20.3  py36h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.20.3  py36hd81dba3_0  anaconda/pkgs/main
scikit-learn                  0.20.3  py37h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.20.3  py37hd81dba3_0  anaconda/pkgs/main
scikit-learn                  0.21.1  py36h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.21.1  py36hd81dba3_0  anaconda/pkgs/main
scikit-learn                  0.21.1  py37h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.21.1  py37hd81dba3_0  anaconda/pkgs/main
scikit-learn                  0.21.1  py38h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.21.1  py38hd81dba3_0  anaconda/pkgs/main
scikit-learn                  0.21.2  py36h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.21.2  py36hd81dba3_0  anaconda/pkgs/main
scikit-learn                  0.21.2  py37h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.21.2  py37hd81dba3_0  anaconda/pkgs/main
scikit-learn                  0.21.3  py36h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.21.3  py36hd81dba3_0  anaconda/pkgs/main
scikit-learn                  0.21.3  py37h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.21.3  py37hd81dba3_0  anaconda/pkgs/main
scikit-learn                    0.22  py36h22eb022_0  anaconda/pkgs/main
scikit-learn                    0.22  py36hd81dba3_0  anaconda/pkgs/main
scikit-learn                    0.22  py37h22eb022_0  anaconda/pkgs/main
scikit-learn                    0.22  py37hd81dba3_0  anaconda/pkgs/main
scikit-learn                    0.22  py38h22eb022_0  anaconda/pkgs/main
scikit-learn                    0.22  py38hd81dba3_0  anaconda/pkgs/main
scikit-learn                  0.22.1  py36h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.22.1  py36hd81dba3_0  anaconda/pkgs/main
scikit-learn                  0.22.1  py37h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.22.1  py37hd81dba3_0  anaconda/pkgs/main
scikit-learn                  0.22.1  py38h22eb022_0  anaconda/pkgs/main
scikit-learn                  0.22.1  py38hd81dba3_0  anaconda/pkgs/main
scikit-learn                  0.23.1  py36h423224d_0  anaconda/pkgs/main
scikit-learn                  0.23.1  py36h7ea95a0_0  anaconda/pkgs/main
scikit-learn                  0.23.1  py37h423224d_0  anaconda/pkgs/main
scikit-learn                  0.23.1  py37h7ea95a0_0  anaconda/pkgs/main
scikit-learn                  0.23.1  py38h423224d_0  anaconda/pkgs/main
scikit-learn                  0.23.1  py38h7ea95a0_0  anaconda/pkgs/main
scikit-learn                  0.23.2  py36h0573a6f_0  anaconda/pkgs/main
scikit-learn                  0.23.2  py37h0573a6f_0  anaconda/pkgs/main
scikit-learn                  0.23.2  py38h0573a6f_0  anaconda/pkgs/main
scikit-learn                  0.23.2  py39ha9443f7_0  anaconda/pkgs/main
scikit-learn                  0.24.1  py36ha9443f7_0  anaconda/pkgs/main
scikit-learn                  0.24.1  py37ha9443f7_0  anaconda/pkgs/main
scikit-learn                  0.24.1  py38ha9443f7_0  anaconda/pkgs/main
scikit-learn                  0.24.1  py39ha9443f7_0  anaconda/pkgs/main
scikit-learn                  0.24.2  py36ha9443f7_0  anaconda/pkgs/main
scikit-learn                  0.24.2  py37ha9443f7_0  anaconda/pkgs/main
scikit-learn                  0.24.2  py38ha9443f7_0  anaconda/pkgs/main
scikit-learn                  0.24.2  py39ha9443f7_0  anaconda/pkgs/main
scikit-learn                   1.0.1 py310h00e6091_0  anaconda/pkgs/main
scikit-learn                   1.0.1  py37h51133e4_0  anaconda/pkgs/main
scikit-learn                   1.0.1  py38h51133e4_0  anaconda/pkgs/main
scikit-learn                   1.0.1  py39h51133e4_0  anaconda/pkgs/main
scikit-learn                   1.0.2  py37h51133e4_0  anaconda/pkgs/main
scikit-learn                   1.0.2  py37h51133e4_1  anaconda/pkgs/main
scikit-learn                   1.0.2  py38h51133e4_0  anaconda/pkgs/main
scikit-learn                   1.0.2  py38h51133e4_1  anaconda/pkgs/main
scikit-learn                   1.0.2  py39h51133e4_0  anaconda/pkgs/main
scikit-learn                   1.0.2  py39h51133e4_1  anaconda/pkgs/main
scikit-learn                   1.1.1 py310h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.1.1  py38h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.1.1  py39h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.1.2 py310h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.1.2  py38h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.1.2  py39h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.1.3 py310h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.1.3 py310h6a678d5_1  anaconda/pkgs/main
scikit-learn                   1.1.3 py311h6a678d5_1  anaconda/pkgs/main
scikit-learn                   1.1.3  py38h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.1.3  py38h6a678d5_1  anaconda/pkgs/main
scikit-learn                   1.1.3  py39h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.1.3  py39h6a678d5_1  anaconda/pkgs/main
scikit-learn                   1.2.0 py310h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.2.0 py310h6a678d5_1  anaconda/pkgs/main
scikit-learn                   1.2.0  py38h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.2.0  py38h6a678d5_1  anaconda/pkgs/main
scikit-learn                   1.2.0  py39h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.2.0  py39h6a678d5_1  anaconda/pkgs/main
scikit-learn                   1.2.1 py310h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.2.1 py311h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.2.1  py38h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.2.1  py39h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.2.2 py310h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.2.2 py310h6a678d5_1  anaconda/pkgs/main
scikit-learn                   1.2.2 py311h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.2.2 py311h6a678d5_1  anaconda/pkgs/main
scikit-learn                   1.2.2  py38h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.2.2  py38h6a678d5_1  anaconda/pkgs/main
scikit-learn                   1.2.2  py39h6a678d5_0  anaconda/pkgs/main
scikit-learn                   1.2.2  py39h6a678d5_1  anaconda/pkgs/main
scikit-learn                   1.3.0 py310h1128e8f_0  anaconda/pkgs/main
scikit-learn                   1.3.0 py311ha02d727_0  anaconda/pkgs/main
scikit-learn                   1.3.0 py312h526ad5a_2  anaconda/pkgs/main
scikit-learn                   1.3.0  py38h1128e8f_0  anaconda/pkgs/main
scikit-learn                   1.3.0  py39h1128e8f_0  anaconda/pkgs/main
(base) yongqiang@yongqiang:~$
(base) yongqiang@yongqiang:~$ conda install scikit-learn==0.23.1
Retrieving notices: ...working... done
Collecting package metadata (current_repodata.json): done
Solving environment: unsuccessful initial attempt using frozen solve. Retrying with flexible solve.
Collecting package metadata (repodata.json): done
Solving environment: unsuccessful initial attempt using frozen solve. Retrying with flexible solve.
Solving environment: -
Found conflicts! Looking for incompatible packages.
This can take several minutes.  Press CTRL-C to abort.
failedUnsatisfiableError: The following specifications were found
to be incompatible with the existing python installation in your environment:Specifications:- scikit-learn==0.23.1 -> python[version='>=3.6,<3.7.0a0|>=3.7,<3.8.0a0|>=3.8,<3.9.0a0']Your python: python=3.11If python is on the left-most side of the chain, that's the version you've asked for.
When python appears to the right, that indicates that the thing on the left is somehow
not available for the python version you are constrained to. Note that conda will not
change your python version to a different minor version unless you explicitly specify
that.The following specifications were found to be incompatible with your system:- feature:/linux-64::__glibc==2.31=0- feature:|@/linux-64::__glibc==2.31=0- scikit-learn==0.23.1 -> libgcc-ng[version='>=7.3.0'] -> __glibc[version='>=2.17']Your installed version is: 2.31(base) yongqiang@yongqiang:~$

References

[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/
[2] microsoft / nn-Meter, https://github.com/microsoft/nn-Meter
[3] nn-meter 2.0, https://pypi.org/project/nn-meter/
[4] nn-Meter: Towards Accurate Latency Prediction of Deep-Learning Model Inference on Diverse Edge Devices, https://air.tsinghua.edu.cn/pdf/nn-Meter-Towards-Accurate-Latency-Prediction-of-Deep-Learning-Model-Inference-on-Diverse-Edge-Devices.pdf

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/152690.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

el-popover和el-tooltip样式修改(普通的组件样式修改方法,对popover是不生效的)

第一步:‘popper-class’=‘popperClass’ //添加类名 <el-table-column label="审核状态" align="center"><template slot-scope="scope"><el-popoverpopper-class="addformPanel"placement="top"width=&…

8086/8088 存储器分段概念

8086/8088 存储器分段概念 这一节主要讲述8086/8088 存储器分段的概念。 目的 从8086 CPU开始采用了分段的方法管理存储器&#xff0c;只有充分理解存储器分段的概念和存储器逻辑地址和物理地址的关系&#xff0c;才能有助于我们掌握8086/8088汇编语言。 存储器分段的原因 在此…

【ArcGIS Pro微课1000例】0033:ArcGIS Pro处理cad数据(格式转换、投影变换)

文章目录 一、cad dwg转shp1. 导出为shp2. cad至地理数据库3. data interoperability tools二、shp投影变换一、cad dwg转shp 1. 导出为shp 加载cad数据,显示如下: 选择需要导出的数据,如面状,右键→数据→导出要素: 导出要素参数如下,点击确定。 导出的要素不带空间参…

shell编程规范与变量

目录 一、shell的作用和规范 1.shell的作用 2.shell的执行顺序 3.shell的格式 4.执行shell脚本 1.直接调用shell解释器加上脚本的名字 2.路径加脚本名 绝对路径或相对路径 脚本文件需要有执行权限 3.直接运行 4.其他执行 5.执行环境 二、脚本的错误方…

Java学习day14:权限修饰符,集合(知识点+例题详解)

声明&#xff1a;该专栏本人重新过一遍java知识点时候的笔记汇总&#xff0c;主要是每天的知识点题解&#xff0c;算是让自己巩固复习&#xff0c;也希望能给初学的朋友们一点帮助&#xff0c;大佬们不喜勿喷(抱拳了老铁&#xff01;) 往期回顾 Java学习day13&#xff1a;泛型&…

Ajax基础(应用场景|jquery实现Ajax|注意事项)

文章目录 一、Ajax简介二、基于jquery实现Ajax三、使用Ajax注意的问题1.Ajax不要与form表单同时提交2.后端响应格式问题3、使用了Ajax作为请求后的注意事项 一、Ajax简介 AJAX&#xff08;Asynchronous Javascript And XML&#xff09;翻译成中文就是“异步Javascript和XML”。…

使用Pytorch测试cuda设备的性能(单卡或多卡并行)

以下CUDA设备泛指NVIDIA显卡 或 启用ROCm的AMD显卡 测试环境&#xff1a; Distributor ID: UbuntuDescription: Ubuntu 22.04.3 LTSRelease: 22.04Codename: jammy 1.首先&#xff0c;简单使用torch.ones测试CUDA设备 import torch import timedef cuda_benchmark(device_id…

ubuntu18.04 terminal打不开的解决方法

目录 现象解决 现象 打开terminal时,一直转圈,然后消失,总是打不开terminal. 解决 编辑文件sudo vim /etc/default/locale,修改为 # File generated by update-locale LANG"en_US.UTF-8" LANGUAGE"en_US:en"重启系统,问题解决.

Python爬虫技术系列-03/4flask结合requests测试静态页面和动态页面抓取

python构建web服务 flask内容参考:Flask框架入门教程&#xff08;非常详细&#xff09; flask安装与运行测试 安装flask pip install flask创建一个webapp.py文件&#xff0c;内容如下 from flask import Flask# 用当前脚本名称实例化Flask对象&#xff0c;方便flask从该脚…

OpenHarmony Axios组件使用过程中,Api9不适配问题

大家好&#xff0c;我是【八戒&#xff0c;你又涨价了哎】 以下是我个人在学习OpenHarmony过程中的分享&#xff0c;请大家多多指教 目录 问题描述 解决方法 问题描述 使用axios组件的时候&#xff0c;把应用部署到开发板&#xff0c;提示Api9不适配 解决方法 对这类版本不…

机器学习模型超参数优化最常用的5个工具包

优化超参数始终是确保模型性能最佳的关键任务。通常&#xff0c;网格搜索、随机搜索和贝叶斯优化等技术是主要使用的方法。 今天分享几个常用于模型超参数优化的 Python 工具包&#xff0c;如下所示&#xff1a; scikit-learn&#xff1a;使用在指定参数值上进行的网格搜索或…

leetcode每日一题31

搜索旋转排序数组 那……二分法呗 数组中的数可以相同 比 33. 搜索旋转排序数组 多了一个「有重复元素」&#xff0c;导致无法根据 num > nums[0] 来判断 num 在哪一半&#xff0c;比如 [1,1,1,1,1,2,1,1,1] 旋转数组两头相等&#xff0c;元素 1 可能在左半边可能在右半边 …

vue2 - SuperMap3D加载基于Nginx服务生成的3DTileset模型切片服务地址

文章目录 🍍开发环境🍉1:nginx发布3Dtileset模型切片服务🍍1.1:准备3DTileset文件🍍1.2:安装nginx服务,配置相关文件1.2.1:下载nginx1.2.2:下载完解压文件如下1.2.3:将3Dtileset模型文件放置 nginx-1.24.0/html/gc 新建文件中如下:1.2.4:配置nginx服务🍉2:…

基于Docker的安装和配置Canal

基本介绍 Canal介绍&#xff1a;Canal 是用 Java 开发的基于数据库增量日志解析&#xff0c;提供增量数据订阅&消费的中间件&#xff08;数据库同步需要阿里的 Otter 中间件&#xff0c;基于 Canal&#xff09;。 Canal背景&#xff1a;阿里巴巴 B2B 公司&#xff0c;因为…

AI绘画使用Stable Diffusion(SDXL)绘制三星堆风格的图片

一、前言 三星堆文化是一种古老的中国文化&#xff0c;它以其精湛的青铜铸造技术闻名&#xff0c;出土文物中最著名的包括青铜面具、青铜人像、金杖、玉器等。这些文物具有独特的艺术风格&#xff0c;显示了高度的工艺水平和复杂的社会结构。 青铜面具的巨大眼睛和突出的颧骨&a…

【Web】Ctfshow Nodejs刷题记录

目录 ①web334 ②web335 ③web336 ④web337 ⑤web338 ⑥web339 ⑦web340 ⑧web341 ⑨web342-343 ⑩web344 ①web334 进来是一个登录界面 下载附件&#xff0c;简单代码审计 表单传ctfshow 123456即可 ②web335 进来提示 get上传eval参数执行nodejs代码 payload: …

【力扣面试经典150题】(链表)K 个一组翻转链表

题目描述 力扣原文链接 给你链表的头节点 head &#xff0c;每 k 个节点一组进行翻转&#xff0c;请你返回修改后的链表。 k 是一个正整数&#xff0c;它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍&#xff0c;那么请将最后剩余的节点保持原有顺序。 你不能只…

面试题:设置view点击事件不回调的几种方式和原理

如何设置view 点击事件不回调&#xff0c;如何实现&#xff1f;有什么区别&#xff1f; setEnabled(false) 这个方案用于设置view是否可以响应用户的其他交互事件如触摸&#xff0c;轨迹球等。 setClickable(false) 这个方法用于设置view是否可以响应用户的点击事件。 set…

技术分享 | 如何写好测试用例?

对于软件测试工程师来说&#xff0c;设计测试用例和提交缺陷报告是最基本的职业技能。是非常重要的部分。一个好的测试用例能够指示测试人员如何对软件进行测试。在这篇文章中&#xff0c;我们将介绍测试用例设计常用的几种方法&#xff0c;以及如何编写高效的测试用例。 ## 一…

vue和uni-app的递归组件排坑

有这样一个数组数据&#xff0c;实际可能有很多级。 tree: [{id: 1,name: 1,children: [{ id: 2, name: 1-1, children: [{id: 7, name: 1-1-1,children: []}]},{ id: 3, name: 1-2 }]},{id: 4,name: 2,children: [{ id: 5, name: 2-1 },{ id: 6, name: 2-2 }]} ]要渲染为下面…