elasticsearch 概述

初识elasticsearch

了解ES

elasticsearch的作用

elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容

例如:

  • 在GitHub搜索代码

    在这里插入图片描述

  • 在电商网站搜索商品
    在这里插入图片描述

ELK技术栈

elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:

在这里插入图片描述

而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。

在这里插入图片描述

elasticsearch和lucene

elasticsearch底层是基于lucene来实现的。

Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:https://lucene.apache.org/ 。

在这里插入图片描述

elasticsearch的发展历史:

  • 2004年Shay Banon基于Lucene开发了Compass
  • 2010年Shay Banon 重写了Compass,取名为Elasticsearch。

在这里插入图片描述

倒排索引

倒排索引的概念是基于MySQL这样的正向索引而言的.所以在介绍倒排索引之前,我们先回顾正向索引

正向索引

那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:
在这里插入图片描述

如果是根据id查询,那么直接走索引,查询速度非常快。

但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:

  1. 用户搜索数据,条件是title符合"%手机%"

  2. 逐行获取数据,比如id为1的数据

  3. 判断数据中的title是否符合用户搜索条件

  4. 如果符合则放入结果集,不符合则丢弃。回到步骤1

因此在进行模糊查询大量数据时,便会效率低下,造成性能瓶颈,所以为了解决模糊查询效率低的问题,倒排索引便应运而生.

倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document:用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
  • 词条(Term:对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条
  • 创建表,每行数据包括词条、词条所在文档id、位置等信息
  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

如图:

在这里插入图片描述

倒排索引的搜索流程如下(以搜索"华为手机"为例):

1)用户输入条件"华为手机"进行搜索。

2)对用户输入内容分词,得到词条:华为手机

3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。

4)拿着文档id到正向索引中查找具体文档。

如图:

在这里插入图片描述

虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。

正向和倒排

那么为什么一个叫做正向索引,一个叫做倒排索引呢?

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程

对比优缺点:

正向索引

  • 优点:
    • 可以给多个字段创建索引
    • 根据索引字段搜索、排序速度非常快
  • 缺点:
    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引

  • 优点:
    • 根据词条搜索、模糊搜索时,速度非常快
  • 缺点:
    • 只能给词条创建索引,而不是字段
    • 无法根据字段做排序

es概念

elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。

文档和字段

elasticsearch是面向**文档(Document)**存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:

而Json文档中往往包含很多的字段(Field),类似于数据库中的列。

索引和映射

索引(Index),就是相同类型的文档的集合。

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;

在这里插入图片描述

因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

mysql与elasticsearch

我们统一的把mysqlelasticsearch的概念做一下对比:

MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
ColumnField字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

是不是说,我们学习了elasticsearch就不再需要mysql了呢?

并不是如此,两者各自有自己的擅长支出:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现
  • 对查询性能要求较高的搜索需求,使用elasticsearch实现
  • 两者再基于某种方式,实现数据的同步,保证一致性

安装es、kibana,分词器

安装

可以参考这篇文章
https://blog.csdn.net/studycodeday/article/details/134451772

我的博客即将同步至腾讯云开发者社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan?invite_code=2cy92jx66fr4c

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/151824.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

简述如何使用Androidstudio对文件进行保存和获取文件中的数据

在 Android Studio 中,可以使用以下方法对文件进行保存和获取文件中的数据: 保存文件: 创建一个 File 对象,指定要保存的文件路径和文件名。使用 FileOutputStream 类创建一个文件输出流对象。将需要保存的数据写入文件输出流中…

Vue3的异步组件使用

通过defineAsyncComponent引入组件&#xff0c;使用Suspense渲染 Suspense有两个插槽&#xff0c;一个default一个fallback <template><Suspense><template #default><userCard></userCard></template><template #fallback>加载中…

我叫:插入排序【JAVA】

1.自我介绍 插入式排序属于内部排序法,是对于欲排序的元素以插入的方式找寻该元素的适当位置&#xff0c;以达到排序的目的。 2.继承我的思想 插入排序(Insertion Sorting)的基本思想是:把n个待排序的元素看成为一个有序表和一个无序表,开始时有序表中只包含一个元素,无序表中包…

WPF ObservableCollection 和 BindingList 有什么区别

ObservableCollection<T>和BindingList<T>都是.NET Framework中的泛型集合类型&#xff0c;它们都支持数据绑定和元素的增加、删除、修改等操作。然而&#xff0c;它们之间存在一些关键的差异&#xff0c;使它们在不同的场景下更有用。 ObservableCollection: Ob…

C#的MessagePack(unity)--02

高级API (MessagePackSerializer) MessagePackSerializer类是MessagePack for C# 的入口点。静态方法构成了MessagePack for C# 的主要API。 APIDescriptionSerialize<T>将一个对象图序列化为MessagePack二进制块。可以使用异步变体获取Stream。也有非泛型重载可用。De…

设计模式—结构型模式之外观模式(门面模式)

设计模式—结构型模式之外观模式&#xff08;门面模式&#xff09; 外观&#xff08;Facade&#xff09;模式又叫作门面模式&#xff0c;是一种通过为多个复杂的子系统提供一个一致的接口&#xff0c;而使这些子系统更加容易被访问的模式。 例子 我们的电脑会有很多 组件&am…

动态页面调研及设计方案

文章目录 vue2 动态表单、动态页面调研一、form-generator二、ng-form-element三、Variant Form四、form-create vue2 动态表单、动态页面调研 一、form-generator 预览&#xff1a;https://mrhj.gitee.io/form-generator/#/ Vue2 Element UI支持拖拽生成表单不支持其他组件…

反电动势对电机起动过程电流的影响

参考链接&#xff1a;反电动势对电机起动过程电流的影响 - 知乎

一个关于proto 文件的经验分享 :gRPC 跨语言双端通信显示错误码:12 UNIMPLEMENTED (附赠gRPC错误码表)

错误现象描述&#xff1a; 在使用c的客户端向golang的服务端发送远程调用时&#xff0c;显示&#xff1a; /home/zry/gRPC/grpc-v1.45.2/examples/cpp/DeviceData/greeter_client.cc83 12: unknown service DeviceData.DeviceDataService Greeter 接收到: RPC 失败这里的unkn…

pytorch的backward()的底层实现逻辑

自动微分是一种计算张量&#xff08;tensors&#xff09;的梯度&#xff08;gradients&#xff09;的技术&#xff0c;它在深度学习中非常有用。自动微分的基本思想是&#xff1a; 自动微分会记录数据&#xff08;张量&#xff09;和所有执行的操作&#xff08;以及产生的新张…

基于梯度算法优化概率神经网络PNN的分类预测 - 附代码

基于梯度算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于梯度算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于梯度优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神经网络的光滑…

细说MySQL数据类型

TOC 目录 MySQL数据类型 数据类型分类 数值类型 tinyint类型 有符号tinyint范围测试 无符号tinyint范围测试 bit类型 bit类型的显示方式 bit类型的范围测试 float类型 有符号float范围测试 无符号float范围测试 decimal类型 字符串类型 char类型 char类型测试 …

Ubuntu 18.04/20.04 LTS 操作系统设置静态DNS

1、nano /etc/systemd/resolved.conf 2、修改配置 使用DNS服务器&#xff1a;223.5.5.5 223.6.6.6 [Resolve] DNS223.5.5.5 223.6.6.6 3、重启服务 systemctl restart systemd-resolved.service 4、查看解析文件 cat /run/systemd/resolve/resolv.conf # This file is man…

Jmeter 如何监控目标服务的系统资源

下载Jmeter插件管理下载 perfmon 将这个插件管理放到Jmeter的\lib\ext目录下 然后重启Jmeter jmeter-plugins-manager-1.10.jar 下载 perfmon插件 添加 io 内存 磁盘的监听 并且添加监听 在宿主机中安装代理监听程序 并启动 ServerAgent.tar.gz

数据结构-插入排序

插入排序 插入排序的三种常见方法&#xff1a; 直接插入排序、折半插入排序、希尔排序。 数据存储结构 因为我们是用的是C语言来实现算法&#xff0c;因此我们需要创建一个结构体&#xff0c;用来存放初始数据。 结构体定义如下&#xff1a; #define MAX 100 typedef int…

设计原则 | 开放封闭原则

一、开放封闭原则&#xff08;OCP&#xff1a;Open-Closed Principle&#xff09; 1、原理 软件实体&#xff08;类、模块、函数等等&#xff09;应该是可以扩展的&#xff0c;但是不可修改的。如果程序中的一处改动就会引发连锁反应&#xff0c;导致一些列相关模块的修改&…

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-如何使用P-Tuning本地化训练ChatGLM2等LLM模型&#xff1f;(二) 文章目录 GPT实战系列-1.训练参数配置传递2.训练前准备3.训练参数配置4.训练对象&#xff0c;seq2seq训练5.执行训练6.训练模型评估依赖数据集的预处理 P-Tuning v2 将 ChatGLM2-6B 模型需要微调的参…

MATLAB 嵌套switch语句||MATLAB while循环

MATLAB 嵌套switch语句 在 MATLAB 中嵌套 switch 语句是可能的&#xff0c;可以在 switch 一部分外嵌套 switch 语句序列。即使 case 常量的内部和外部的 switch 含有共同的值&#xff0c;也不算冲突出现。 MATLAB嵌套switch语句语法 嵌套switch语句的语法如下&#xff1a; s…

012 C++ AVL_tree

前言 本文将会向你介绍AVL平衡二叉搜索树的实现 引入AVL树 二叉搜索树虽可以缩短查找的效率&#xff0c;但如果数据有序或接近有序普通的二叉搜索树将退化为单支树&#xff0c;查找元素相当于在顺序表中搜索元素&#xff0c;效率低下。因此&#xff0c;两位俄罗斯的数学家G.M…

学习模拟简明教程【Learning to simulate】

深度神经网络是一项令人惊叹的技术。 有了足够的标记数据&#xff0c;他们可以学习为图像和声音等高维输入生成非常准确的分类器。 近年来&#xff0c;机器学习社区已经能够成功解决诸如对象分类、图像中对象检测和图像分割等问题。 上述声明中的加黑字体警告是有足够的标记数…