C#,数值计算——对数正态分布(logarithmic normal distribution)的计算方法与源程序

 

对数正态分布(logarithmic normal distribution)是指一个随机变量的对数服从正态分布,则该随机变量服从对数正态分布。对数正态分布从短期来看,与正态分布非常接近。但长期来看,对数正态分布向上分布的数值更多一些。

有些量本身就是不对称的。例如,试想,人们完成某项特定任务需要的时间:因为每个人都是不同的,我们会得到一个分布。然而,所有的值都必然是正数(因为时间不可能为负数)。而且,我们还能预测到该分布可能的形状:有一个无人可及的最小时间,然后是少数一些非常快的“冠军”,接下来就是普通人的最具代表性的完成时间形成一个高峰,最后是尾部一长串的“掉队者”。显然,高斯分布不会很好地描述这样的分布,因为高斯分布中x可以定义为正值,也可定义为负值,它是对称的且尾部很短。
在很多应用中,特别是在可靠性和维修性方面,数据可能不符合正态分布。可是,随机变量的对数可能符合正态分布,对此情况称为对数正态分布。如果应用对数正态分布,在对数正态图纸上数据的图形将是一条直线。绘图的过程与其他分布是相同的。其分析的过程包括计算对数值的平均值和标准差,以及对最终结果取反对数。
对数正态分布与正态分布很类似,除了它的概率分布向右进行了移动。对数正态分布从短期来看,与正态分布非常接近。但长期来看,对数正态分布向上分布的数值更多一些。更准确地说,对数正态分布中,有更大向上波动的可能,更小向下波动的可能。
对数正态分布用于半导体器件的可靠性分析和某些种类的机械零件的疲劳寿命。其主要用途是在维修性分析中对修理时间数据进行确切的分析。
已知对数正态分布的密度函数,就可以根据可靠度与不可靠度函数的定义计算出该分布的可靠度函数和不可靠度函数的表达式。

对数正态分布具有如下性质:
(1)正态分布经指数变换后即为对数正态分布;对数正态分布经对数变换后即为正态分布。
(2)γ,t是正实数,X是参数为(μ,σ)的对数正态分布,则仍是对数正态分布,参数为。
(3)对数正态总是右偏的。
(4)对数正态分布的均值和方差是其参数(μ,σ)的增函数。
(5)对给定的参数μ,当σ趋于零时,对数正态分布的均值趋于exp(μ),方差趋于零。
 

using System;

namespace Legalsoft.Truffer
{
    public class Lognormaldist : Erf
    {
        private double mu { get; set; }
        private double sig { get; set; }

        public Lognormaldist(double mmu = 0.0, double ssig = 1.0)
        {
            this.mu = mmu;
            this.sig = ssig;
            if (sig <= 0.0)
            {
                throw new Exception("bad sig in Lognormaldist");
            }
        }

        public double p(double x)
        {
            if (x < 0.0)
            {
                throw new Exception("bad x in Lognormaldist");
            }
            //if (x == 0.0)
            if (Math.Abs(x) <= float.Epsilon)
            {
                return 0.0;
            }
            return (0.398942280401432678 / (sig * x)) * Math.Exp(-0.5 * Globals.SQR((Math.Log(x) - mu) / sig));
        }

        public double cdf(double x)
        {
            if (x < 0.0)
            {
                throw new Exception("bad x in Lognormaldist");
            }
            //if (x == 0.0)
            if (Math.Abs(x) <= float.Epsilon)
            {
                return 0.0;
            }
            return 0.5 * erfc(-0.707106781186547524 * (Math.Log(x) - mu) / sig);
        }

        public double invcdf(double p)
        {
            if (p <= 0.0 || p >= 1.0)
            {
                throw new Exception("bad p in Lognormaldist");
            }
            return Math.Exp(-1.41421356237309505 * sig * inverfc(2.0 * p) + mu);
        }
    }
}
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/15003.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Tailwind CSS:基础使用/vue3+ts+Tailwind

一、理解Tailwind 安装 - TailwindCSS中文文档 | TailwindCSS中文网 Installation - Tailwind CSS 1.1、词义 我们简单理解就是搭上CSS的顺风车&#xff0c;事半功倍。 1.2、Tailwind CSS有以下优势 1. 快速开发&#xff1a;Tailwind CSS 提供了一些现成的 class / 可复用…

ARM裸机-4

1、什么是交叉编译 1.1、两种开发模式 非嵌入式开发&#xff0c;A&#xff08;类&#xff09;机编写&#xff08;源代码&#xff09;、编译得到可执行程序&#xff0c;发布给A&#xff08;类&#xff09;机运行。 嵌入式开发&#xff0c;A&#xff08;类&#xff09;机编写&am…

Spring源码(三)Spring Bean生命周期

Bean的生命周期就是指&#xff1a;在Spring中&#xff0c;一个Bean是如何生成的&#xff0c;如何销毁的 Bean生命周期流程图 1、生成BeanDefinition Spring启动的时候会进行扫描&#xff0c;会先调用org.springframework.context.annotation.ClassPathScanningCandidateCompo…

Qt C++实现Excel表格的公式计算

用Qt的QTableViewQStandardItemModelQStyledItemDelegate实现类似Excel表格的界面&#xff0c;在parser 模块中提供解析表格单元格输入的公式。单元格编辑结束后按回车进行计算和更新显示。 效果如下&#xff1a; 支持的公式计算可以深度嵌套&#xff0c;目前parser模块中仅提…

【Java】零基础上手SpringBoot学习日记(day1)

前言 此帖为本人学习Springboot时的笔记&#xff0c;由于是个接触计算机一年左右的新手&#xff0c;也没有网站开发经验&#xff0c;所以有些地方的理解会比较浅显并且可能会出现错误&#xff0c;望大佬们多多包涵和指正。 Web应用开发 在我的理解中&#xff0c;Web应用的开发…

测试|测试分类

测试|测试分类 文章目录 测试|测试分类1.按照测试对象分类&#xff08;部分掌握&#xff09;2.是否查看代码&#xff1a;黑盒、白盒灰盒测试3.按开发阶段分&#xff1a;单元、集成、系统及验收测试4.按实施组织分&#xff1a;α、β、第三方测试5.按是否运行代码&#xff1a;静…

Mysql sql优化

目录 目的 目标 explain 优化 避免使用select * 用union all代替union 小表驱动大表&#xff08;in与exists&#xff09; 批量操作 多使用limit in中值太多 不使用%前缀模糊查询 不在where子句中进行表达式操作 避免隐式类型转换 联合索引遵守最左前缀法则 inne…

【Spring Boot 源码学习】走近 AutoConfigurationImportSelector

AutoConfigurationImportSelector 源码解析 引言主要内容1. ImportSelector 接口2. DeferredImportSelector 接口3. AutoConfigurationImportSelector 功能概述 总结 引言 上篇博文我们了解了 EnableAutoConfiguration 注解&#xff0c;其中真正实现自动配置功能的核心实现者 …

细讲TCP三次握手四次挥手(二)

TCP/IP 协议族 应用层 应用层( application-layer &#xff09;的任务是通过应用进程间的交互来完成特定网络应用。应用层协议定义的是应用进程&#xff08;进程&#xff1a;主机中正在运行的程序&#xff09;间的通信和交互的规则。 对于不同的网络应用需要不同的应用层协议…

C语言字串函数、内存函数介绍以及模拟实现

目录 前言 本期内容介绍&#xff1a; 一、字符串函数 strlen介绍 strlen 模拟实现&#xff08;三种方式&#xff09; 方法一&#xff1a;计数器法 方法二&#xff1a;递归法&#xff08;不创建临时变量法&#xff09; 方法三&#xff1a;指针-指针 strcpy介绍 strcpy模…

速度快\颜色准\功能多,移动端HEIF图片解码实现方案

HEIF图片压缩格式是一种使用HEVC编码技术存储图像数据的方式&#xff0c;在同等质量下相比JPEG可节省50%以上空间&#xff0c;无论是节约包体还是节省带宽&#xff0c;使用HEIF格式都能有所收益。 基于百度智能云音视频处理MCP的自研BD265编码器&#xff0c;百度智能云对象存储…

合并两个有序数组——力扣88

文章目录 题目描述法一 双指针法二 逆向双指针 题目描述 法一 双指针 使用双指针方法&#xff0c;将两个数组看作队列&#xff0c;每次从两个数组头部取出比较小的数字放到结果中。 void merge(vector<int>&nums1, int m,vector<int>&nums2, int n){int p1…

C++ ——STL容器【list】模拟实现

代码仓库&#xff1a; list模拟实现 list源码 数据结构——双向链表 文章目录 &#x1f347;1. 节点结构体&#x1f348;2. list成员&#x1f349;3. 迭代器模板&#x1f34a;4. 迭代器&#x1f34b;5. 插入删除操作&#x1f34c;5.1 insert & erase&#x1f34c;5.2 push_…

15 文本编辑器vim

15.1 建立文件命令 如果file.txt就是修改这个文件&#xff0c;如果不存在就是新建一个文件。 vim file.txt 使用vim建完文件后&#xff0c;会自动进入文件中。 15.2 切换模式 底部要是显示插入&#xff0c;是编辑模式&#xff1b; 按esc&#xff0c;底部要是空白的&#xff0…

微服务契约测试框架Pact-Python实战

Pact是一个契约测试框架&#xff0c;有多种语言实现&#xff0c;本文以基于pact-python探究契约测试到底是什么&#xff1f;以及如何实现 官网&#xff1a;自述文件 |契约文档 (pact.io) 契约测试步骤 1、为消费者写一个单元测试&#xff0c;让它通过&#xff0c;并生成契约…

OS-08-事件驱动:C10M是如何实现的?

08-事件驱动&#xff1a;C10M是如何实现的&#xff1f; 你好&#xff0c;我是陶辉。 上一讲介绍了广播与组播这种一对多通讯方式&#xff0c;从这一讲开始&#xff0c;我们回到主流的一对一通讯方式。 早些年我们谈到高并发&#xff0c;总是会提到C10K&#xff0c;这是指服务…

MIT 6.830数据库系统 -- lab five

MIT 6.830数据库系统 -- lab five 项目拉取引言搜索练习1 BTreeFile.findLeafPage() 插入练习2 Spliting Page 删除练习3 页再分配练习4 合并页 事务小结 项目拉取 原项目使用ant进行项目构建&#xff0c;我已经更改为Maven构建&#xff0c;大家直接拉取我改好后的项目即可: …

Zookeeper入门介绍

Zookeeper在我本次系统的学习之前是已经开始使用了&#xff0c;但是并不理解Zookeeper到底是什么&#xff0c;有什么作用&#xff0c;你或许跟我有一样的疑惑&#xff0c;本专栏将会解决这些疑惑。 目录 Zookeeper介绍&#xff1a; zookeeper特点&#xff1a; 数据结构&#x…

《MySQL 实战 45 讲》课程学习笔记(二)

日志系统&#xff1a;一条 SQL 更新语句是如何执行的&#xff1f; 与查询流程不一样的是&#xff0c;更新流程还涉及两个重要的日志模块&#xff1a;redo log&#xff08;重做日志&#xff09;和 binlog&#xff08;归档日志&#xff09;。 重要的日志模块&#xff1a;redo l…

【VSCode部署模型】导出TensorFlow2.X训练好的模型信息

参考tensorflow2.0 C加载python训练保存的pb模型 经过模型训练及保存&#xff0c;我们得到“OptimalModelDataSet2”文件夹&#xff0c;模型的保存方法(.h5或.pb文件)&#xff0c;参考【Visual Studio Code】c/c部署tensorflow训练的模型 其中“OptimalModelDataSet2”文件夹保…