【C++历练之路】list的重要接口||底层逻辑的三个封装以及模拟实现

W...Y的主页 😊

代码仓库分享💕 


🍔前言:

在C++的世界中,有一种数据结构,它不仅像一个神奇的瑰宝匣,还像一位能够在数据的海洋中航行的智慧舵手。这就是C++中的list,一个引人入胜的工具,它以一种优雅而强大的方式管理着数据的舞台。想象一下,你有一个能够轻松操纵、轻松操作的魔法列表,让你的编程之旅变得轻松而令人愉悦。让我们一同揭开list的神秘面纱,深入探索这个双向链表的奇妙世界。

目录

list的介绍及使用

list的介绍

 list的使用

 list的构造

list iterator的使用

list capacity

list element access

 list modifiers

list的模拟实现

模拟实现list的准备

封装节点——第一个封装

创建list类——第二个封装

push_back函数模拟

创建迭代器类——第三个封装 

 begin与end函数模拟

insert函数模拟实现

erase函数模拟实现

clear函数以及析构函数的实现

其余函数接口的实现 


list的介绍及使用

list的介绍

1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。
3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。
4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。
5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素) 

list的文档介绍 icon-default.png?t=N7T8https://legacy.cplusplus.com/reference/list/list/

 list的使用

list中的接口比较多,此处类似,只需要掌握如何正确的使用,然后再去深入研究背后的原理,已达到可扩展的能力。以下为list中一些常见的重要接口。

 list的构造

构造函数( (constructor))接口说明
list (size_type n, const value_type& val = value_type()) 构造的list中包含n个值为val的元素
list() 构造空的list
list (const list& x) 拷贝构造函数
list (InputIterator first, InputIterator last)         用[first, last)区间中的元素构造list
#define _CRT_SECURE_NO_WARNINGS#include <iostream>
using namespace std;
#include <list>
#include <vector>// list的构造
void TestList1()
{list<int> l1;                         // 构造空的l1list<int> l2(4, 100);                 // l2中放4个值为100的元素list<int> l3(l2.begin(), l2.end());  // 用l2的[begin(), end())左闭右开的区间构造l3list<int> l4(l3);                    // 用l3拷贝构造l4// 以数组为迭代器区间构造l5int array[] = { 16,2,77,29 };list<int> l5(array, array + sizeof(array) / sizeof(int));// 列表格式初始化C++11list<int> l6{ 1,2,3,4,5 };
// 用迭代器方式打印l5中的元素list<int>::iterator it = l5.begin();while (it != l5.end()){cout << *it << " ";++it;}       cout << endl;// C++11范围for的方式遍历for (auto& e : l5)cout << e << " ";cout << endl;
}

list的构造与STL中vector、string构造大同小异,都是有构造空对象,构造的list中包含n个值为val的元素,拷贝构造以及迭代器构造。 

list iterator的使用

此处,大家可暂时将迭代器理解成一个指针,该指针指向list中的某个节点。

函数声明接口说明
begin+end返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器
rbegin+rend返回第一个元素的reverse_iterator,即end位置,返回最后一个元素下一个位置的reverse_iterator,即begin位置

 

// list迭代器的使用
// 注意:遍历链表只能用迭代器和范围for
void PrintList(const list<int>& l)
{// 注意这里调用的是list的 begin() const,返回list的const_iterator对象for (list<int>::const_iterator it = l.begin(); it != l.end(); ++it){cout << *it << " ";// *it = 10; 编译不通过}cout << endl;
}void TestList2()
{int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };list<int> l(array, array + sizeof(array) / sizeof(array[0]));// 使用正向迭代器正向list中的元素// list<int>::iterator it = l.begin();   // C++98中语法auto it = l.begin();                     // C++11之后推荐写法while (it != l.end()){cout << *it << " ";++it;}cout << endl;// 使用反向迭代器逆向打印list中的元素// list<int>::reverse_iterator rit = l.rbegin();auto rit = l.rbegin();while (rit != l.rend()){cout << *rit << " ";++rit;}cout << endl;
}

 【注意】
1. begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动
2. rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动

3.迭代器都会提供两个版本,一个是无const修饰的,一个是有const修饰的

list capacity

函数声明接口说明
empty 检测list是否为空,是返回true,否则返回false
size返回list中有效节点的个数

// list::empty
#include <iostream>
#include <list>int main ()
{std::list<int> mylist;int sum (0);for (int i=1;i<=10;++i) mylist.push_back(i);while (!mylist.empty()){sum += mylist.front();mylist.pop_front();}std::cout << "total: " << sum << '\n';return 0;
}

// list::size
#include <iostream>
#include <list>int main ()
{std::list<int> myints;std::cout << "0. size: " << myints.size() << '\n';for (int i=0; i<10; i++) myints.push_back(i);std::cout << "1. size: " << myints.size() << '\n';myints.insert (myints.begin(),10,100);std::cout << "2. size: " << myints.size() << '\n';myints.pop_back();std::cout << "3. size: " << myints.size() << '\n';return 0;
}

 这两个函数都是与list中成员有关的函数,我们学会后可以方便快速使用。

list element access

 函数声明接口说明
front返回list的第一个节点中值的引用
back返回list的最后一个节点中值的引用

// list::front
#include <iostream>
#include <list>int main ()
{std::list<int> mylist;mylist.push_back(77);mylist.push_back(22);// now front equals 77, and back 22mylist.front() -= mylist.back();std::cout << "mylist.front() is now " << mylist.front() << '\n';return 0;
}

// list::back
#include <iostream>
#include <list>int main ()
{std::list<int> mylist;mylist.push_back(10);while (mylist.back() != 0){mylist.push_back ( mylist.back() -1 );}std::cout << "mylist contains:";for (std::list<int>::iterator it=mylist.begin(); it!=mylist.end() ; ++it)std::cout << ' ' << *it;std::cout << '\n';return 0;
}

 list modifiers

函数声明接口说明
push_front在list首元素前插入值为val的元素
pop_front删除list中第一个元素
push_back在list尾部插入值为val的元素
pop_back删除list中最后一个元素
insert在list position 位置中插入值为val的元素
erase删除list position位置的元素
swap交换两个list中的元素
clear清空list中的有效元素
// list插入和删除
// push_back/pop_back/push_front/pop_front
void TestList3()
{int array[] = { 1, 2, 3 };list<int> L(array, array + sizeof(array) / sizeof(array[0]));// 在list的尾部插入4,头部插入0L.push_back(4);L.push_front(0);PrintList(L);// 删除list尾部节点和头部节点L.pop_back();L.pop_front();PrintList(L);
}// insert /erase 
void TestList4()
{int array1[] = { 1, 2, 3 };list<int> L(array1, array1 + sizeof(array1) / sizeof(array1[0]));// 获取链表中第二个节点auto pos = ++L.begin();cout << *pos << endl;// 在pos前插入值为4的元素L.insert(pos, 4);PrintList(L);// 在pos前插入5个值为5的元素L.insert(pos, 5, 5);PrintList(L);// 在pos前插入[v.begin(), v.end)区间中的元素vector<int> v{ 7, 8, 9 };L.insert(pos, v.begin(), v.end());PrintList(L);// 删除pos位置上的元素L.erase(pos);PrintList(L);// 删除list中[begin, end)区间中的元素,即删除list中的所有元素L.erase(L.begin(), L.end());PrintList(L);
}// resize/swap/clear
void TestList5()
{// 用数组来构造listint array1[] = { 1, 2, 3 };list<int> l1(array1, array1 + sizeof(array1) / sizeof(array1[0]));PrintList(l1);// 交换l1和l2中的元素list<int> l2;l1.swap(l2);PrintList(l1);PrintList(l2);// 将l2中的元素清空l2.clear();cout << l2.size() << endl;
}

这些都是list中一些重要接口,我们一定要牢记。list中还有一些操作,需要用到时大家可参阅list的文档说明。

list的模拟实现

模拟实现list的准备

要模拟实现list,必须要熟悉list的底层结构以及其接口的含义,所以我们先从STL源码(SGI版本)开始学习。我们要进行模拟,首先得知道底层的数据类型都有什么。

首先我们知道list是带头双向链表,所以每一处都有一个节点,所以C++肯定会对节点进行封装。

源码中创建了节点的模板,使用struct对节点进行封装处理。因为我们要访问节点,所以使用struct进行类定义而不是class,class默认类部成员都是私有,struct默认类部成员都是公有。

接下来应该看list的结构,看list中的成员变量有什么?

  list类中只有一个成员,并且这个成员是节点的指针。

我们已经大致了解了list的类型,接下来我们开始模拟实现list。

封装节点——第一个封装

#include<assert.h>
#include<iostream>
using namespace std;
namespace why
{template<class T>struct list_node{list_node<T>* _next;list_node<T>* _prev;T _data;list_node(const T& x = T()):_next(nullptr), _prev(nullptr), _data(x){}};

创建一个节点类进行封装, 我们在这里没有源码中那么繁琐,不需要定义空指针进行强制类型转换,而是直接使用list_node<T>*进行指针声明。在这里我们也需要构造函数,默认构造函数对指针不能很好的初始化。

创建list类——第二个封装

template<class T>
class list
{typedef list_node<T> node;
public:typedef __list_iterator<T,T&,T*> iterator;typedef __list_iterator<T, const T&,const T*> const_iterator;list(){_head = new node;_head->_next = _head;_head->_prev = _head;}
private:node* _head;
};

list是一个双向循环链表,所以它只需要一个指针,便可以遍历整个链表并且回到原来的位置。为此我们可以设计一个头节点为list的起始节点,这个头节点不含任何数据,它只是作为一个空的节点而已,所以我们创建一个_head指针作为头节点。

push_back函数模拟

push_back函数是在list的末尾进行插入数据,就与C语言中的数据结构一样进行插入即可。

void push_back(const T& x)
{node* tail = _head->_prev;
//创建新节点node* newnode = new node(x);tail->_next = newnode;newnode->_prev = tail;newnode->_next = _head;_head->_prev = newnode;}

创建一个新节点,让新节点的_prev指向尾部,_next指向头节点。让头节点的_prev指向新节点,尾部节点的_next指向新节点即可。

创建迭代器类——第三个封装 

我们现在已经可以将数据尾插到list中去了,但是如何进行遍历打印呢?在list中因为每一个节点的空间是不连续的,所以不能重载[]进行下标访问。而且在string与vector中都使用的是原生指针,所以可以进行++,!=,*()操作,但是在list中却不能使用。因此list的迭代器应该是自定义类型对原生指针的封装,模拟指针的行为,才能有正确的递增,递减,取值,成员取用的行为。

我们需要通过源码进行分析,然后创建一个迭代器的类自己进行重载正确使用。这里推荐大家去看一下源码。

SGI版本list源码icon-default.png?t=N7T8https://github.com/karottc/sgi-stl

 总结如下:

递增:正确的找到其next的地址

递减:正确的找到其prev的地址

取值:当前节点的取值

成员取用:当前节点的成员

template<class T,class Ref,class Ptr>
struct __list_iterator
{typedef list_node<T> node;typedef __list_iterator<T, Ref,Ptr> self;node* _node;__list_iterator(node* n):_node(n){}Ref& operator*(){return _node->_data;}self operator++(){_node = _node->_next;return *this;}self operator++(int){self tmp(_node);_node = _node->_next;return tmp;}self operator--(){_node = _node->_prev;return *this;}self operator--(int){self tmp(_node);_node = _node->_prev;return tmp;}Ptr operator->(){return &_node->_data;}bool operator!=(const self& s){return _node != s._node;}bool operator==(const self& s){return _node == s._node;}
};

 类模板中为什么有三个参数呢?因为*()与->进行重载时会面临两种情况,有无const修饰,所以我们可以通过模板来传递此重载是否有无const。如果不理解这种情况,我们可以分开写有无const的情况,但是这样需要写4种情况,造成代码的冗余。

这时我们就可以使用迭代器对list进行遍历打印操作了,可以使用范围for。

void test1()
{list<int> ll;ll.push_back(1);ll.push_back(1);ll.push_back(1);ll.push_back(1);list<int>::iterator it = ll.begin();while (it != ll.end()){cout << *it << ' ';++it;}cout << endl;
}

 注意:这里我们在给迭代器it赋值时调用了默认拷贝构造函数,因为这里不需要深拷贝。但是在vector,string的情况来说浅拷贝会报错,但是这里为什么没有报错呢?因为在迭代器类中我们并没有写析构函数,所以不会进行多次重复释放空间。

我们这里是不需要写析构函数的,因为迭代器创建的类只是为了更好的适应迭代器的操作,因为list是不连续的空间,我们迭代器指向的空间全部都是节点的,我们只是使用一下而已不需要进行释放操作,释放是list的事情。

 begin与end函数模拟

iterator begin()
{//iterator it(_head->_next);//return it;return iterator(_head->_next);
}const_iterator begin() const
{return const_iterator(_head->_next);
}iterator end()
{return iterator(_head);
}const_iterator end() const
{//iterator it(_head->_next);//return it;return const_iterator(_head);
}

begin与end都有两个版本,const与非const。

insert函数模拟实现

插入函数非常简单,在迭代器pos位置进行插入即可。

	void insert(iterator pos, const T& x){node* cur = pos._node;node* prev = cur->_prev;node* newnode = new node(x);prev->_next = newnode;newnode->_prev = prev;cur->_prev = newnode;newnode->_next = cur; }

将插入的数进行前端后端相连即可。

前面说过,此处大家可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。

erase函数模拟实现

 我们可以看出erase是有返回值的,就是避免迭代器失效的原因,而且绝对不能删除哨兵位节点,所以得使用断言。

iterator erase(iterator pos)
{assert(pos != end());node* prev = pos._node->_prev;node* cur = pos._node->_next;prev->_next = cur;cur->_prev = prev;delete pos._node;return iterator(cur);
}

 写完insert与erase我们就可以对其进行复用,pop_back、pop_front、push_back、push_front就是进行了首插、首删、尾插、尾删。

void pop_back()
{erase(--end());
}
void pop_front()
{erase(begin());
}
void push_back(const T& x)
{insert(end(), x);
}
void push_front(const T& x)
{insert(begin(), x);
}

clear函数以及析构函数的实现

clear函数就是将list置空,所以我们可以复用erase进行逐一删除即可。

void clear()
{iterator it = begin();while (it != end()){erase(it++);//it = erase(it);}
}

不能使用erase(it),会导致迭代器失效 

析构函数将空间全部释放置空:

~list()
{clear();delete _head;_head = nullptr;
}

其余函数接口的实现 

迭代器初始化:

template <class Iterator>
list(Iterator first, Iterator last)
{empty_init();while (first != last){push_back(*first);++first;}
}

拷贝构造函数:

void swap(list<T>& tmp)
{std::swap(_head, tmp._head);
}
list(const list<T>& lt)
{_head = new node;_head->_next = _head;_head->_prev = _head;list<T> tmp(lt.begin(), lt.end());swap(tmp);
}

 我们使用现代写法进行偷懒,我们使用迭代器初始化一个临时对象tmp,将tmp与目标进行交换即可。

赋值重载构造:

list<int>& operator=(list<T> lt)
{swap(lt);return *this;
}

我们使用传值时会进行拷贝构造临时对象lt,将lt与目标进行交换即可,属于窃取劳动成果! 


在我们的"C++ List探秘之旅"中,我们像是一群探险者,勇敢地穿越了C++编程的密林,发现了list这个神奇的宝藏。现在,当我们回望这段旅程时,或许你已经领略到了在数据操控的掌声中,list是如何成为代码交响乐团的一部分。这并不是终点,而是一个新的起点。在C++的舞台上,list为你打开了通往更高层次编程乐趣的大门,希望大家可以通过本文走的更高。感谢观看!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/150013.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

低代码平台全解析:衍生历程、优势呈现与未来趋势一览无余

在数字化时代&#xff0c;应用程序的开发与更新已成为企业保持竞争力的关键。传统的编码方式&#xff0c;虽然精细且功能强大&#xff0c;但耗时且要求开发者具备较高的技术水平。在这样的背景下&#xff0c;低代码开发平台的出现无疑为企业带来了福音。 低代码开发平台是一种创…

大数据-之LibrA数据库系统告警处理(ALM-12057 元数据未配置周期备份到第三方服务器的任务)

告警解释 系统安装完成后会检查元数据是否有周期备份到第三方服务器的任务&#xff0c;然后每1小时会检查一次。如果元数据未配置周期备份到第三方服务器的任务&#xff0c;将发送严重告警。 在用户创建元数据周期备份到第三方服务器的任务后&#xff0c;告警消除。 告警属性…

Redis ACL 规则说明

Redis ACL 规则说明 前情回顾ACL 定义规范启用和禁用用户允许和禁止调用命令允许或禁止访问某些 Key为用户配置有效密码 ACL 命令说明 前情回顾 上一篇文章 我们整体性的介绍了 Redis 的 ACL&#xff0c;我们来回顾下 ACL 的两种配置方式。 redis 使用 acl 有两种方式可以配置…

微服务 Spring Cloud 7,Nacos配置中心的Pull原理,附源码

目录 一、本地配置二、配置中心1、以Nacos为例&#xff1a;2、Pull模式3、也可以通过Nacos实现注册中心 三、配置中心提供了哪些功能四、如何操作配置中心1、配置注册2、配置反注册3、配置查看4、配置变更订阅 五、主流的微服务注册中心有哪些&#xff0c;如何选择&#xff1f;…

为何公司强调流程员工总是觉得反感?

在企业管理中&#xff0c;流程设计对于提高效率和降低风险至关重要。然而&#xff0c;很多企业在流程设计时常犯一些常见的错误&#xff0c;导致基层员工对流程感到烦扰&#xff0c;甚至产生抵触情绪。本文将通过分析一个企业的报销流程问题&#xff0c;探讨如何优化流程以提高…

开关电源测试方法分享:开关电源关机维持时间的测试步骤、测试标准

开关电源关机维持时间是指切断电源后输出电压下降到稳压范围外为止的时间。关机维持时间是开关电源测试项目之一&#xff0c;测试时需要用到交流电源、电子负载、示波器等测试设备。那么开关电源测试系统要如何测试关机维持时间呢? 开关电源关机维持时间的测试步骤 关机维持时…

[C/C++]数据结构 LeetCode:用栈实现队列

题目描述: 请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作&#xff08;push、pop、peek、empty&#xff09;&#xff1a; 实现 MyQueue 类&#xff1a; void push(int x) 将元素 x 推到队列的末尾int pop() 从队列的开头移除并返回元素int peek() 返…

java基础练习缺少项目?看这篇文章就够了(上)!

公众号&#xff1a;全干开发 。 专注分享简洁但高质量的动图技术文章&#xff01; 项目概述 本教程适合刚学习完java基础语法的同学&#xff0c;涉及if语句、循环语句、类的封装、集合等基础概念&#xff0c;使用大量gif图帮助读者演示代码操作、效果等&#xff0c;是一个非常…

如何在 Linux 上部署 RabbitMQ

如何在 Linux 上部署 RabbitMQ 文章目录 如何在 Linux 上部署 RabbitMQ安装 Erlang从预构建的二进制包安装从源代码编译 Erlang RabbitMQ 的安装使用 RabbitMQ Assistant 连接 RabbitMQ Assistant 是一款优秀的RabbitMQ 可视化管理工具&#xff0c;提供丰富的管理功能。下载地址…

9、传统计算机视觉 —— 边缘检测

本节介绍一种利用传统计算机视觉方法来实现图片边缘检测的方法。 什么是边缘检测? 边缘检测是通过一些算法来识别图像中物体之间,或者物体与背景之间的边界,也就是边缘。 边缘通常是图像中灰度变化显著的地方,标志着不同区域的分界线。 在一张图像中,边缘可以是物体的…

2024有哪些免费的mac苹果电脑内存清理工具?

在我们日常使用苹果电脑的过程中&#xff0c;随着时间的推移&#xff0c;可能会发现设备的速度变慢了&#xff0c;甚至出现卡顿的现象。其中一个常见的原因就是程序占用内存过多&#xff0c;导致系统无法高效地运行。那么&#xff0c;苹果电脑内存怎么清理呢&#xff1f;本文将…

【SpringCloud】Eureka基于Ribbon负载均衡的调用链路流程分析

文章目录 前言1.调用形式2.LoadBalancerInterceptor3.负载均衡流程分析3.1 调用流程图3.2 intercept&#xff08;&#xff09;方法3.3 execute&#xff08;&#xff09;方法3.4 getServer()方法3.4 子类的chooseServer&#xff08;&#xff09;方法3.5 getLoadBalancerStats().…

基于Spring Boot 框架的试卷自动生成系统的设计与实现

项目描述 临近学期结束&#xff0c;还是毕业设计&#xff0c;你还在做java程序网络编程&#xff0c;期末作业&#xff0c;老师的作业要求觉得大了吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等。你想解决的问题&#xff0c;今天给大家介绍…

2024年测试工程师必看系列之fiddler设置手机端抓包全套教程

fiddler设置手机端抓包 安卓手机抓包 第一步&#xff1a;配置电脑和安卓的相关设置 1、手机和fiddler位于同一个局域网内&#xff1b;首先从fiddler处获取到ip地址和端口号&#xff1a; &#xff0c;点击online&#xff0c;最后一行就是ip地址 2、路径&#xff1a;Tools》Op…

基于单片机的智能家居安保系统(论文+源码)

1.系统设计 本次基于单片机的智能家居安保系统设计&#xff0c;在功能上如下&#xff1a; 1&#xff09;以51单片机为系统控制核心&#xff1b; 2&#xff09;温度传感器、人体红外静释电、烟雾传感器来实现检测目的&#xff1b; 3&#xff09;以GSM模块辅以按键来实现远/近程…

SpringCloud微服务 【实用篇】| Eureka注册中心、Ribbon负载均衡

目录 一&#xff1a;Eureka注册中心 1. Eureka原理 2. 动手实践 ①搭建EurekaServer ②服务注册 ③服务发现 二&#xff1a;Ribbon负载均衡 1. 负载均衡原理 2. 负载均衡策略 3. 懒加载 一&#xff1a;Eureka注册中心 前面已经分析了&#xff0c;无论是SpringCloud还…

【前端学java】复习巩固-Java中的对象比较(14)

往期回顾&#xff1a; 【前端学java】JAVA开发的依赖安装与环境配置 &#xff08;0&#xff09;【前端学 java】java的基础语法&#xff08;1&#xff09;【前端学java】JAVA中的packge与import&#xff08;2&#xff09;【前端学java】面向对象编程基础-类的使用 &#xff08…

南京--ChatGPT/GPT4 科研实践应用

2023年随着OpenAI开发者大会的召开&#xff0c;最重磅更新当属GPTs&#xff0c;多模态API&#xff0c;未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义&#xff0c;不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车…

云计算赛项容器云2023搭建

部署容器云平台[5 分] 使 用 OpenStack 私 有 云 平 台 创 建 两 台 云 主 机 &#xff0c; 云 主 机 类 型 使 用 4vCPU/12G/100G 类型&#xff0c;分别作为 Kubernetes 集群的 Master 节点和 node 节点&#xff0c; 然后完成 Kubernetes 集群的部署&#xff0c;并完成 Istio …

澳洲猫罐头真实水平如何?我家亲自喂养过的优质猫罐头推荐给大家

当我们选择猫罐头时&#xff0c;要关注它的营养配方是否完整均衡、原料是否新鲜优质以及生产工艺是否科学可靠。只有满足这三个条件的猫罐头&#xff0c;才能称得上是高品质的。 猫罐头要营养均衡&#xff0c;好的配方不能少&#xff1b;猫罐头成品要优质&#xff0c;原材料要…