卷积神经网络(VGG-16)海贼王人物识别

文章目录

  • 前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
      • 我的环境:
    • 2. 导入数据
    • 3. 查看数据
  • 二、数据预处理
    • 1. 加载数据
    • 2. 可视化数据
    • 3. 再次检查数据
    • 4. 配置数据集
    • 5. 归一化
  • 三、构建VGG-16网络
    • 1. 官方模型(已打包好)
    • 2. 自建模型
    • 3. 网络结构图
  • 四、编译
  • 五、训练模型
  • 六、模型评估

前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1
import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")

2. 导入数据

import matplotlib.pyplot as plt
import os,PIL# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)from tensorflow import keras
from tensorflow.keras import layers,modelsimport pathlib
data_dir = "weather_photos/"
data_dir = pathlib.Path(data_dir)

3. 查看数据

数据集中一共有路飞、索隆、娜美、乌索普、乔巴、山治、罗宾等7个人物角色

文件夹含义数量
lufei路飞117 张
suolong索隆90 张
namei娜美84 张
wusuopu乌索普77张
qiaoba乔巴102 张
shanzhi山治47 张
luobin罗宾105张
image_count = len(list(data_dir.glob('*/*.jpg')))print("图片总数为:",image_count)

二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

batch_size = 32
img_height = 224
img_width = 224
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 621 files belonging to 7 classes.
Using 497 files for training.
val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 621 files belonging to 7 classes.
Using 124 files for validation.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)
['lufei', 'luobin', 'namei', 'qiaoba', 'shanzhi', 'suolong', 'wusuopu']

2. 可视化数据

plt.figure(figsize=(10, 5))  # 图形的宽为10高为5for images, labels in train_ds.take(1):for i in range(8):ax = plt.subplot(2, 4, i + 1)  plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")

在这里插入图片描述

plt.imshow(images[1].numpy().astype("uint8"))

在这里插入图片描述

3. 再次检查数据

for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break
(32, 224, 224, 3)
(32,)
  • Image_batch是形状的张量(32,180,180,3)。这是一批形状180x180x3的32张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(32,)的张量,这些标签对应32张图片

4. 配置数据集

AUTOTUNE = tf.data.AUTOTUNEtrain_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

5. 归一化

normalization_layer = layers.experimental.preprocessing.Rescaling(1./255)
normalization_train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y))
image_batch, labels_batch = next(iter(val_ds))
first_image = image_batch[0]
# 查看归一化后的数据
print(np.min(first_image), np.max(first_image))
0.0 0.9928046

三、构建VGG-16网络

VGG优缺点分析:

  • VGG优点

VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)

  • VGG缺点

1)训练时间过长,调参难度大。2)需要的存储容量大,不利于部署。例如存储VGG-16权重值文件的大小为500多MB,不利于安装到嵌入式系统中。

1. 官方模型(已打包好)

官网模型调用这块我放到后面几篇文章中,下面主要讲一下VGG-16

# model = keras.applications.VGG16()
# model.summary()

2. 自建模型

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropoutdef VGG16(nb_classes, input_shape):input_tensor = Input(shape=input_shape)# 1st blockx = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)# 2nd blockx = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)# 3rd blockx = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)# 4th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)# 5th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)# full connectionx = Flatten()(x)x = Dense(4096, activation='relu',  name='fc1')(x)x = Dense(4096, activation='relu', name='fc2')(x)output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)model = Model(input_tensor, output_tensor)return modelmodel=VGG16(1000, (img_width, img_height, 3))
model.summary()
Model: "model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, 224, 224, 3)]     0         
_________________________________________________________________
block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792      
_________________________________________________________________
block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928     
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0         
_________________________________________________________________
block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856     
_________________________________________________________________
block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584    
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0         
_________________________________________________________________
block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168    
_________________________________________________________________
block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0         
_________________________________________________________________
block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160   
_________________________________________________________________
block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0         
_________________________________________________________________
block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         
_________________________________________________________________
flatten (Flatten)            (None, 25088)             0         
_________________________________________________________________
fc1 (Dense)                  (None, 4096)              102764544 
_________________________________________________________________
fc2 (Dense)                  (None, 4096)              16781312  
_________________________________________________________________
predictions (Dense)          (None, 1000)              4097000   
=================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
_________________________________________________________________

3. 网络结构图

结构说明:

  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示
  • 3个全连接层(Fully connected Layer),分别用fcXpredictions表示
  • 5个池化层(Pool layer),分别用blockX_pool表示

VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16

在这里插入图片描述

四、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=1e-4)model.compile(optimizer=opt,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])

五、训练模型

epochs = 20history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)
Epoch 1/20
16/16 [==============================] - 14s 461ms/step - loss: 4.5842 - accuracy: 0.1349 - val_loss: 6.8389 - val_accuracy: 0.1129
Epoch 2/20
16/16 [==============================] - 2s 146ms/step - loss: 2.1046 - accuracy: 0.1398 - val_loss: 6.7905 - val_accuracy: 0.2016
Epoch 3/20
16/16 [==============================] - 2s 144ms/step - loss: 1.7885 - accuracy: 0.3531 - val_loss: 6.7892 - val_accuracy: 0.2903
Epoch 4/20
16/16 [==============================] - 2s 145ms/step - loss: 1.2015 - accuracy: 0.6135 - val_loss: 6.7582 - val_accuracy: 0.2742
Epoch 5/20
16/16 [==============================] - 2s 148ms/step - loss: 1.1831 - accuracy: 0.6108 - val_loss: 6.7520 - val_accuracy: 0.4113
Epoch 6/20
16/16 [==============================] - 2s 143ms/step - loss: 0.5140 - accuracy: 0.8326 - val_loss: 6.7102 - val_accuracy: 0.5806
Epoch 7/20
16/16 [==============================] - 2s 150ms/step - loss: 0.2451 - accuracy: 0.9165 - val_loss: 6.6918 - val_accuracy: 0.7823
Epoch 8/20
16/16 [==============================] - 2s 147ms/step - loss: 0.2156 - accuracy: 0.9328 - val_loss: 6.7188 - val_accuracy: 0.4113
Epoch 9/20
16/16 [==============================] - 2s 143ms/step - loss: 0.1940 - accuracy: 0.9513 - val_loss: 6.6639 - val_accuracy: 0.5968
Epoch 10/20
16/16 [==============================] - 2s 143ms/step - loss: 0.0767 - accuracy: 0.9812 - val_loss: 6.6101 - val_accuracy: 0.7419
Epoch 11/20
16/16 [==============================] - 2s 146ms/step - loss: 0.0245 - accuracy: 0.9894 - val_loss: 6.5526 - val_accuracy: 0.8226
Epoch 12/20
16/16 [==============================] - 2s 149ms/step - loss: 0.0387 - accuracy: 0.9861 - val_loss: 6.5636 - val_accuracy: 0.6210
Epoch 13/20
16/16 [==============================] - 2s 152ms/step - loss: 0.2146 - accuracy: 0.9289 - val_loss: 6.7039 - val_accuracy: 0.4839
Epoch 14/20
16/16 [==============================] - 2s 152ms/step - loss: 0.2566 - accuracy: 0.9087 - val_loss: 6.6852 - val_accuracy: 0.6532
Epoch 15/20
16/16 [==============================] - 2s 149ms/step - loss: 0.0579 - accuracy: 0.9840 - val_loss: 6.5971 - val_accuracy: 0.6935
Epoch 16/20
16/16 [==============================] - 2s 152ms/step - loss: 0.0414 - accuracy: 0.9866 - val_loss: 6.6049 - val_accuracy: 0.7581
Epoch 17/20
16/16 [==============================] - 2s 146ms/step - loss: 0.0907 - accuracy: 0.9689 - val_loss: 6.6476 - val_accuracy: 0.6452
Epoch 18/20
16/16 [==============================] - 2s 147ms/step - loss: 0.0929 - accuracy: 0.9685 - val_loss: 6.6590 - val_accuracy: 0.7903
Epoch 19/20
16/16 [==============================] - 2s 146ms/step - loss: 0.0364 - accuracy: 0.9935 - val_loss: 6.5915 - val_accuracy: 0.6290
Epoch 20/20
16/16 [==============================] - 2s 151ms/step - loss: 0.1081 - accuracy: 0.9662 - val_loss: 6.6541 - val_accuracy: 0.6613

六、模型评估

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/149634.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

笔记56:深度循环神经网络

本地笔记地址:D:\work_file\DeepLearning_Learning\03_个人笔记\3.循环神经网络\第9章:动手学深度学习~现代循环神经网络 a a a a a a a a

Cesium冷知识:判断cesium是否使用webgl2

老的Cesium.js,默认使用webgl1.0技术 现在默认使用webgl2.0技术 虽然有默认值,但是都可以通过相关参数来改变webgl版本 那么如何判断当前Cesium.js使用的是哪个webgl版本? 方案1: let isWebgl2viewer.scene.context.webgl2; //…

vue动态配置路由

文章目录 前言定义项目页面格式一、vite 配置动态路由新建 /router/utils.ts引入 /router/utils.ts 二、webpack 配置动态路由总结如有启发,可点赞收藏哟~ 前言 项目中动态配置路由可以减少路由配置时间,并可减少配置路由出现的一些奇奇怪怪的问题 路由…

vue将base64编码转为pdf方法

<iframe width"100%" height"100%" src"" frameborder"0" id"iframe"></iframe>使用方法: 直接调用就行 viewPdf(传入base64编码即可)//content是base64编码格式const viewPdf (content:any)> {const blob …

为什么选择B+树作为数据库索引结构?

背景 首先&#xff0c;来谈谈B树。为什么要使用B树&#xff1f;我们需要明白以下两个事实&#xff1a; 【事实1】 不同容量的存储器&#xff0c;访问速度差异悬殊。以磁盘和内存为例&#xff0c;访问磁盘的时间大概是ms级的&#xff0c;访问内存的时间大概是ns级的。有个形象…

抖音运营的必备10个工具,开启智能拓客引流新时代!

先来看实操成果&#xff0c;↑↑需要的同学可看我名字↖↖↖↖↖&#xff0c;或评论888无偿分享 一、引言 亲爱的知友们&#xff0c;您们是否对抖音运营有浓厚的兴趣和独特的见解&#xff1f;今天&#xff0c;我将为您介绍一些抖音运营必备的工具&#xff0c;帮助您在抖音上脱颖…

windows通过命令给文件夹或文件增加权限

给Demo001追加everyone权限 D:\cmd>cacls Demo001 /p everyone:f /e 处理的目录: D:\cmd\Demo001D:\cmd> 给Demo001下的所有文件追加everyone权限 D:\cmd>cacls Demo001 /p everyone:f /e /t 处理的目录: D:\cmd\Demo001 处理的目录: D:\cmd\Demo001\A 处理的文件:…

SpringMvc请求原理流程

springmvc是用户和服务沟通的桥梁&#xff0c;官网提供了springmvc的全面使用和解释&#xff1a;DispatcherServlet :: Spring Framework 流程 1.Tomcat启动 2.解析web.xml文件&#xff0c;根据servlet-class找到DispatcherServlet&#xff0c;根据init-param来获取spring的…

Mysql 千万级别查询优化

经常碰到慢查询报警&#xff0c;我们线上的慢sql阈值是1s&#xff0c;出现报警的表数据有 7000多万&#xff0c;经常出现报警的是一个group by的count查询&#xff0c;于是便开始着手优化这块&#xff0c;记录下自己优化过程中的心得 拿下面这张表举例&#xff0c;这是一张记录…

Android Native崩溃信息分析和 工具(addr2line和ndkstack)使用

这里以一个实际的crash案例未demo进行分析和讲解。针对native的崩溃信息。一般来讲&#xff0c;较快的方式是直接检索到backtrace&#xff0c;然后通过分析和使用工具addr2line和 ndk-stack等定位到出问题的地方。这里截取了一段 崩溃日志&#xff0c;具体如下&#xff1a; 01…

2311ddip1000不能从函数返回域引用

原文 以下程序无法用-previewdip1000编译: void main() safe {int[3] a [1, 2, 3];int[] slice;//好slice a[];scope ref getSlice() { return slice; }//错误:把对a局部变量的引用赋值给非域getSlice()getSlice() a[]; }getSlice应该可返回可安全地赋值给a[]的引用. 如常…

QtC++与QColumnView详解

介绍 在 Qt 中&#xff0c;QColumnView 是用于显示多列数据的控件&#xff0c;它提供了一种多列列表视图的方式&#xff0c;类似于文件资源管理器中的详细视图。QColumnView 是基于模型/视图架构的&#xff0c;通常与 QFileSystemModel 或自定义模型一起使用。 以下是关于 QC…

【文末送书】计算机网络 | IO多路转接技术 | poll/epoll详解

欢迎关注博主 Mindtechnist 或加入【Linux C/C/Python社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和…

前端对用户名密码加密处理,后端解密

一. 正常表单提交如图&#xff0c;可以看见输入的用户名密码等 二. 使用crypto-js.min.js进行前端加密处理 js资源地址链接&#xff1a;https://pan.baidu.com/s/1kfQZ1SzP6DUz50D–g_ziQ 提取码&#xff1a;1234 前端代码 <script type"text/javascript" src&q…

C#8.0本质论第十四章--事件

C#8.0本质论第十四章–事件 委托本身是一个更大的模式(Pattern)的基本单位&#xff0c;称为Publish-Subscribe(发布-订阅)或Observer(观察者)。 14.1使用多播委托实现Publish-Subscribe模式 14.1.1定义订阅者方法 public class Cooler {public Cooler(float temperature){T…

java命令 jmap 堆参数分析

jmap -heap pid 展示pid的整体堆信息 bash-4.4# jmap -heap 10 Attaching to process ID 10, please wait... Debugger attached successfully. Server compiler detected. JVM version is 25.172-b11using thread-local object allocation. Garbage-First (G1) GC with 8 th…

给EmEditor添加自定义外部工具DuilibPreviewer

duilib是一款xml描述UI布局的优秀的c开源界面库&#xff0c;为了方便开发布局UI&#xff0c;有网友制作了预览工具DuilibPreviewer&#xff0c;源码链接https://github.com/juhuaguai/duilib/tree/master/DuilibPreview。 为了进一步方便开发&#xff0c;便于随时预览自己用xm…

kettle创建数据库资源库kettle repository manager

数据库资源库是将作业和转换相关的信息存储在数据库中&#xff0c;执行的时候直接去数据库读取信息&#xff0c;很容易跨平台使用。 创建数据库资源库&#xff0c;如图 1.点击Connect 2.点击Repository Manager 3.点击Other Repository 4.点击Database Repository 在选择Ot…

AI监管规则:各国为科技监管开辟了不同的道路

AI监管规则&#xff1a;各国为科技监管开辟了不同的道路 一份关于中国、欧盟和美国如何控制AI的指南。 编译 李升伟 茅 矛 &#xff08;特趣生物科技有限公司&#xff0c;广东深圳&#xff09; 插图&#xff1a;《自然》尼克斯宾塞 今年5月&#xff0c;科技公司OpenAI首席…

深兰科技成功入选《2023年度国家知识产权优势企业名单》

2023年11月13日&#xff0c;国家知识产权局正式公布了《2023年度国家知识产权优势企业的名单》(以下简称“《名单》”)。深兰人工智能科技(上海)股份有限公司成功入选&#xff0c;荣获“国家知识产权优势企业”称号。 “国家知识产权优势企业”是指企业经营范围属于国家重点发展…