世界坐标系,相机坐标系,像素坐标系转换 详细说明(附代码)

几个坐标系介绍,相机内外参的回顾参考此文。
本文主要说明如何在几个坐标系之间转换。

本文涉及

  1. 使用相机内参 在 像素坐标系 和 相机坐标系 之间转换。
  2. 使用相机外参(位姿)在相机坐标系 和 世界坐标系 之间转换。
  3. (qw,qx,qy,qz,tx,ty,tz)形式的外参如何使用。
  4. 以具体情景为例,每一步详细说明,并结合代码进一步理解每个步骤。

以下面的情景为例
假设 I1 (img1) 上有一点p1,现在要通过相机1,相机2的内外参把p1映射到 I2 (img2)上的对应点p2.
还需要知道p1的深度,假设有img1的深度图,可以读取p1处的深度。

在这里插入图片描述

整体思路:

p1在图片 I1 上,是像素坐标系,根据camera1的内参把它转到camera1的相机坐标系,得到(xc1, yc1, zc1),
根据camera1的外参把 (xc1, yc1, zc1) 转到 世界坐标系,得到上图中的P点坐标(xw1, yw1, zw1),
根据camera2的外参把P点 (xw1, yw1, zw1) 转到camera2的相机坐标系,得到 (xc2, yc2, zc2).
最后根据camera2的内参 把 (xc2, yc2, zc2) 转到像素坐标系,得到图像 I2 上的 p2 点坐标(x2, y2).

整个坐标系的转换关系:像素1 -> 相机1 -> 世界 -> 相机2 -> 像素2

其中,像素坐标系为2D,其他都是3D。
相机外参 也 称为 位姿 (pose).

具体步骤:

(1). p1 像素坐标 --> 相机1 坐标

这两个坐标系的关系由相机内参决定,
相机内参(fx, fy, cx, cy)
假设像素坐标为(x1, y1), 相机1坐标为(xc1, yc1, zc1), 其中zc1为 I1 的深度图 (xc1, yc1)处的值,那么

x 1 = f x x c 1 z c 1 + c x x_{1} = f_{x}\frac{x_{c1}}{z_{c1}} + c_{x} x1=fxzc1xc1+cx,   y 1 = f y y c 1 z c 1 + c y y_{1} = f_{y}\frac{y_{c1}}{z_{c1}} + c_{y} y1=fyzc1yc1+cy  (1)

现在要求 xc1 和 yc1, 由(1)得到
x c 1 = ( x 1 − c x ) ∗ z c 1 / f x x_{c1} = (x_{1}- c_{x}) * z_{c1} / f_{x} xc1=(x1cx)zc1/fx    y c 1 = ( y 1 − c y ) ∗ z c 1 / f y y_{c1} = (y_{1}- c_{y}) * z_{c1} / f_{y} yc1=(y1cy)zc1/fy

代码:

depth1_ori = cv2.imread("depth1.png", -1)  #uint16型
depth1 = cv2.split(depth1_ori)[0]
#p1点对应的相机坐标
zc1 = depth1[y1, x1] / 1000.0  #这里深度单位是mm
xc1 = (x1 - cx) * zc1 / fx
yc1 = (y1 - cy) * zc1 / fy

(2). p1 的相机1 坐标 --> 世界坐标

转换关系: 相机坐标 = T * 世界坐标, 世界坐标 = T-1 * 相机坐标
其中 T 为world -> camera的转换矩阵。

如何求得转换矩阵 T ?先从概念介绍开始

旋转矩阵R :3 * 3矩阵
平移向量 t : 3 * 1矩阵
把R 和 t 拼成转换矩阵 T :4 * 4矩阵,

T = [ R t 0 T 1 ] T = \begin{bmatrix} R & t\\ 0^{T}&1 \end{bmatrix} T=[R0Tt1]

顺便提一下李群李代数,T是SE(3), R是SO(3).

话题回到坐标,(xc1, yc1, zc1)为相机1坐标,(xw, yw, zw) 为世界坐标,那么世界坐标转相机坐标为:

[ x c 1 y c 1 z c 1 1 ] = T ⋅ [ x w y w z w 1 ] \begin{bmatrix} x_{c1} \\ y_{c1}\\ z_{c1}\\ 1 \end{bmatrix} = T \cdot \begin{bmatrix} x_{w} \\ y_{w}\\ z_{w}\\ 1 \end{bmatrix} xc1yc1zc11 =T xwywzw1

你肯定很好奇,为什么要加一维呢?
如果 T T T 不加最后一行的 [ 0 T 1 ] \begin{bmatrix} 0^{T}&1 \end{bmatrix} [0T1],坐标也不加最后一维的1,直接 T = [ R t ] T = \begin{bmatrix} R & t \end{bmatrix} T=[Rt] 也能计算,为什么一定要加一维?

[ x c y c z c ] = T ⋅ [ x w y w z w ] \begin{bmatrix} x_{c} \\ y_{c}\\ z_{c} \end{bmatrix} = T \cdot \begin{bmatrix} x_{w} \\ y_{w}\\ z_{w} \end{bmatrix} xcyczc =T xwywzw , 这里 T = [ R t ] T = \begin{bmatrix}R & t\end{bmatrix} T=[Rt]

是这样的,现在是从 世界坐标 转 相机1坐标 ,如果要把 相机1坐标 转 世界坐标 呢?
(我们现在要做的就是把 p1的 相机1坐标 转到 世界坐标。)

那就需要这么计算了,

[ x w y w z w ] = T − 1 ⋅ [ x c y c z c ] \begin{bmatrix} x_{w} \\ y_{w}\\ z_{w} \end{bmatrix} = T^{-1}\cdot \begin{bmatrix} x_{c} \\ y_{c}\\ z_{c} \end{bmatrix} xwywzw =T1 xcyczc ,这里 T = [ R t ] T = \begin{bmatrix}R & t\end{bmatrix} T=[Rt],无法求逆矩阵

求 T 的逆矩阵,T 必须是square(行数 = 列数)的,不能是3 * 4, 必须是4 * 4的。

所以加上一行,凑成 4 * 4 矩阵

T = [ R t 0 T 1 ] T = \begin{bmatrix} R & t\\ 0^{T}&1 \end{bmatrix} T=[R0Tt1]

那么 相机坐标 --> 世界坐标 就变为:

[ x w y w z w 1 ] = T − 1 ⋅ [ x c y c z c 1 ] \begin{bmatrix} x_{w} \\ y_{w}\\ z_{w}\\ 1 \end{bmatrix} = T^{-1} \cdot \begin{bmatrix} x_{c} \\ y_{c}\\ z_{c}\\ 1 \end{bmatrix} xwywzw1 =T1 xcyczc1

有的程序中会使用Twc, Tcw这样的称呼,这里w指world, 是世界坐标,c指camera, 是相机坐标。
T表示转换矩阵,至于Twc 是world转camera 还是camera转world, 需要根据实际情况而定(每个开发者习惯不一样)。

实际中,到了这里估计还是不知如何计算 T,问题在哪呢?

我们拿到的 相机外参 一般会是一个四元数+平移向量的形式,其中并没有R矩阵。
相机外参:(qw, qx, qy, qz, tx, ty, tz), (这个顺序要根据实际情况而定,有的相机顺序并不是这样)。

这里用四元数 q = (qw, qx, qy, qz) 代替了R矩阵,
原因在于R是3 * 3矩阵,有9个量,而一次旋转只有3个自由度,这种表达方式是冗余的,四元数的表达更紧凑。

上面是涉及到的相关概念,现在开始计算T。

计算转换矩阵 T

现在要先把 q 转为 R,再由R, t 得到T。
q = (qw, qx, qy, qz), (一定是qw, qx, qy ,qz的顺序,不是的先调整到这个顺序)
t = (tx, ty, tz), 这里要注意t 的单位,如果是mm, 需要 / 1000.0.

如果用Eigen库,可以这么得到T,
Isometry3d是4 * 4 欧式变换矩阵,就是T的格式(参考)

Eigen::Quaterniond q(qw, qx, qy, qz);
Eigen::Isometry3d T(q);
//先设置的旋转矩阵,下面平移要在旋转前的坐标系上平移,所以是pretranslate
T.pretranslate(Eigen::Vector3d(tx, ty, tz));

如果用Sophus::SE3d

SE3d T = SE3d(Quaterniond(qw, qx, qy, qz),Vector3d(tx, ty, tz)));

直接计算的话,由四元数 q 到旋转矩阵 R 的公式为(转此处的图):
这里q0, q1, q2, q3分别对应 qw, qx, qy, qz.

在这里插入图片描述

结合 (tx, ty, tz), 下面再加一行 [ 0 T 1 ] \begin{bmatrix} 0^{T}&1 \end{bmatrix} [0T1],得到T1 (由相机1的外参得到)。

T1 = np.array([[1 - 2 * q2 ** 2 - 2 * q3 ** 2,2 * q1 * q2 - 2 * q0 * q3,2 * q1 * q3 + 2 * q0 * q2,tx,  #注意单位,如果是mm,要/1000.0],[2 * q1 * q2 + 2 * q0 * q3,1 - 2 * q1 ** 2 - 2 * q3 ** 2,2 * q2 * q3 - 2 * q0 * q1,ty,  #注意单位,如果是mm,要/1000.0],[2 * q1 * q3 - 2 * q0 * q2,2 * q2 * q3 + 2 * q0 * q1,1 - 2 * q1 ** 2 - 2 * q2 ** 2,tz,  #注意单位,如果是mm,要/1000.0],[0,0,0,1],])

已经得到了T1,下面可把相机坐标转为世界坐标

[ x w y w z w 1 ] = T 1 − 1 ⋅ [ x c 1 y c 1 z c 1 1 ] \begin{bmatrix} x_{w} \\ y_{w}\\ z_{w}\\ 1 \end{bmatrix} = T_{1}^{-1} \cdot \begin{bmatrix} x_{c1} \\ y_{c1}\\ z_{c1}\\ 1 \end{bmatrix} xwywzw1 =T11 xc1yc1zc11

代码:

p1_c = np.array([xc1, yc1, zc1, 1])
p_w = np.matmul(np.linalg.inv(T1), np.expand_dims(p1_c,1))

(3). 世界坐标 --> 相机2坐标

上面已经说明了如何由 世界坐标 转 相机坐标。
注意上面求的T1 是由相机1的外参得到,
这里要用到相机2的外参,camera2: (qw2, qx2, qy2, qz2, tx2, ty2, tz2),
求得T2 后,由下式得到 P 的相机2坐标

[ x c 2 y c 2 z c 2 1 ] = T 2 ⋅ [ x w y w z w 1 ] \begin{bmatrix} x_{c2} \\ y_{c2}\\ z_{c2}\\ 1 \end{bmatrix} = T_{2} \cdot \begin{bmatrix} x_{w} \\ y_{w}\\ z_{w}\\ 1 \end{bmatrix} xc2yc2zc21 =T2 xwywzw1

p2_c = np.matmul(T2, p_w)

(4) 相机2坐标 --> 像素坐标2

相机内参(fx, fy, cx, cy)

x 2 = f x x c 2 z c 2 + c x x_{2} = f_{x}\frac{x_{c2}}{z_{c2}} + c_{x} x2=fxzc2xc2+cx,   y 2 = f y y c 2 z c 2 + c y y_{2} = f_{y}\frac{y_{c2}}{z_{c2}} + c_{y} y2=fyzc2yc2+cy

xc2 = p2_c[0]
yc2 = p2_c[1]
zc2 = p2_c[2]
x2 = xc2 * fx / zc2 + cx
y2 = yc2 * fy / zc2 + cy

这样就得到了图像 I2 上的映射点 p2的坐标。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/149441.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】pow函数实现的伽马变换详解和示例

本文通过原理和示例对伽马变换进行详解,并通过改变变换系数展示不同的效果,以帮助大家理解和使用。 原理 伽马变换是一种用于图像增强的技术,它可以用来提高或降低图像的对比度,常用于医学图像处理和计算机视觉等领域。伽马变换…

姿态估计 MediaPipe实现手势,人体姿态,面部动作估计的用法

姿态估计 MediaPipe实现手势,人体姿态,面部动作估计的用法 import mediapipe as mp import cv2 import numpy as np import time # 定义一个函数,计算两个点的距离 def findDis(pts1,pts2):return ((pts2[0]-pts1[0])**2 (pts2[1]-pts1[1])*…

媒体行业的3D建模:在影视中创造特效纹理

在线工具推荐: 三维数字孪生场景工具 - GLTF/GLB在线编辑器 - Three.js AI自动纹理化开发 - YOLO 虚幻合成数据生成器 - 3D模型在线转换 - 3D模型预览图生成服务 在本文中,我们将探讨 3D 建模在媒体行业中的作用,特别是它在影视特效创作…

反渗透水处理成套设备有哪些

反渗透水处理成套设备主要包括反渗透装置、预处理系统、控制系统等部分。 反渗透装置:反渗透水处理设备的核心部分,由反渗透膜、压力容器、膜组件等组成。反渗透膜是一种高分子材料制成的半透膜,能够截留水中的溶解盐、有机物、细菌等杂质&a…

(动手学习深度学习)第13章 计算机视觉---微调

文章目录 微调总结 微调代码实现 微调 总结 微调通过使用在大数据上的恶道的预训练好的模型来初始化模型权重来完成提升精度。预训练模型质量很重要微调通常速度更快、精确度更高 微调代码实现 导入相关库 %matplotlib inline import os import torch import torchvision f…

Midjourney绘画提示词Prompt参考学习教程

一、工具 SparkAi: SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软…

SDL2 播放音频数据(PCM)

1.简介 这里以常用的视频原始数据PCM数据为例,展示音频的播放。 SDL播放音频的流程如下: 初始化音频子系统:SDL_Init()。设置音频参数:SDL_AudioSpec。设置回调函数:SDL_AudioCallback。打开音频设备:SD…

ML-Net:通过深度学习彻底改变多标签分类

一、说明 多标签分类是一项具有挑战性的机器学习任务,其中输入可以同时属于多个类。传统的多标签分类方法通常依赖于将问题转化为一系列二元分类任务或使用集成方法。然而,深度学习的出现开创了多标签分类的新时代,ML-Net 等模型突破了该领域…

02-1解析xpath

我是在edge浏览器中安装的xpath,需要安装的朋友可以参考下面这篇博客最新版edge浏览器中安装xpath插件 一、xpathd的使用 安装lxml pip install lxml ‐i https://pypi.douban.com/simple导入lxml.etree from lxml import etreeetree.parse() 解析本地文件 htm…

vscode的git 工具使用

vscode的git 工具使用 目录概述需求: 设计思路实现思路分析1.git 工具的使用2.提交代码3.查看历史提交代码 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy,skip hardness,make a be…

Servlet API 详解

文章目录 前言什么是ServletHttpServletHttpServletRequest1. form表单构造POST请求2. JSON形式表示body部分 HttpServletResponse 前言 前面为大家介绍了如何使用 servlet 写一个简单的网站,前面只是大概了解了如何使用简单的 servlet,而平时网站的逻辑…

Hive Lateral View explode列为空时导致数据异常丢失

一、问题描述 日常工作中我们经常会遇到一些非结构化数据,因此常常会将Lateral View 结合explode使用,达到将非结构化数据转化成结构化数据的目的,但是该方法对应explode的内容是有非null限制的,否则就有可能造成数据缺失。 SE…

typora整理markdown笔记

效果 符号 快捷键 斜体 * * ctrlB(代表同时按) 加粗 ** ** ctrlI 竖线 > 超链接 清除样式 ctrl\ 图片 ![图片描述][图片绝对路径/相对路径] 如何在Typora中插入图像? ➊ 使用Markdown语法 (不推荐,太慢) ➋ 直接拷贝图…

Theory behind GAN

假如要生成一些人脸图,实际上就是想要找到一个分布,从这个分布内sample出来的图片像是人脸,分布之外生成的就不像人脸。而GAN要做的就是找到这个distribution。 在GAN之前用的是Maximum Likelihood Estimation。 Maximum Likelihood Estimat…

同创永益联合红帽打造一站式数字韧性解决方案

随着AI技术的快速兴起,IT技术已成为推动业务持续增长的重要驱动力,这要求企业不断尝试新事物,改变固有流程,加强IT技术与业务的合作,同时提升数字韧性能力,以实现业务目标。10月26日,红帽2023中…

Bert学习笔记(简单入门版)

目 录 一、基础架构 二、输入部分 三、预训练:MLMNSP 3.1 MLM:掩码语言模型 3.1.1 mask模型缺点 3.1.2 mask的概率问题 3.1.3 mask代码实践 3.2 NSP 四、如何微调Bert 五、如何提升BERT下游任务表现 5.1 一般做法 5.2 如何在相同领域数据中进…

学习UI第一天

在工作闲暇之余,自己画的原型图,再次做一次记录,哈哈哈 萌宠领养UI设计原型图 https://modao.cc/proto/lq2KqIVBs48xwylNZlA7OP/sharing?view_moderead_only #萌宠领养-分享 可以点击此链接,进行查看O(∩_∩)O哈哈~

二进制部署k8s集群-过程中的问题总结(接上篇的部署)

1、kube-apiserver部署过程中的问题 kube-apiserver.conf配置文件更改 2、calico的下载地址 curl https://docs.projectcalico.org/v3.20/manifests/calico.yaml -O 这里如果kubernetes的节点服务器为多网卡配置会产生报错 修改calino.yaml配置文件 解决方法: 调…

论文阅读——DiffusionDet

在目标检测上使用扩散模型 前向过程:真实框-->随机框 后向过程:随机框-->真实框 前向过程: 一般一张图片真实框的数目不同,填补到同一的N个框,填补方法可以是重复真实框,填补和图片大小一样的框&a…

Redis 学习

Redis 集群共3种集群模式: 1. 主从模式 (主写从读),写请求分配到主库,完后数据同步到从库,从库主要负责读请求 同步过程: 从库启动向主库发送同步请求,数据传输的形式是RDB文件&am…