实用篇-ES-DSL查询文档

数据的存储不是目的,我们希望从海量的酒店数据中检索出需要的信息,这就是ES的搜索功能

官方文档: https://elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html#query-dsl。DSL是用来查询文档的

Elasticsearch提供了基于JSON的DSL来定义查询,简单说就是用json来描述查询条件,然后发送给es服务,最后es服务基于查询条件,把结果返回给我们

常见的查询类型包括如下:

1、查询所有: 查询出所有数据,一般在测试的时候使用

match_all

2、全文检索查询: 利用分词器对用户输入内容进行分词,然后去倒排索引库中匹配

match_query
multi_match_query

3、精确查询: 根据精确的词条值去查找数据,一般是查找keyword、数值、日期、boolean等类型的字段。这些字段是不需要分词的,但是依旧会建立倒排索引,把字段的整体内容作为一个词条,并存入倒排索引。在查找的时候,也就不需要分词,直接把搜索的内容去跟倒排索引匹配即可

ids,表示根据id,进行精确匹配range,表示根据数值范围,进行精确匹配term,表示根据数据的值,进行精确匹配

4、地理查询: 根据经纬度查询

geo_distance
geo_bounding_box

5、复合查询: 复合查询可将上述各种查询条件组合一起,合并查询条件

bool,利用逻辑运算把其它查询条件组合起来
function_score,用于控制相关度算分,算分会影响性能

一、DSL查询语法

GET /hotel/_search
{"query": {"match_all": {}}
}

存在一个问题,我们明明查询的是所有文档,查询结果也显示查询出所有的文档了,为什么上图右侧,鼠标往下拉,最多才只有10条文档数据呢

原因: 受默认的分页条件限制,后面学习的时候,会进行解决

二、全文检索查询

首先保证你已经做好了 '实用篇-ES-环境搭建' ,创建了名为hotel的索引库,导入了批量文档。然后开始下面的操作

全文检索查询,分为下面两种,会对用户输入内容进行分词之后,再进行匹配。也就是利用分词器对用户输入内容进行分词,然后去倒排索引库中匹配

match_query
multi_match_query

【第一种全文检索查询】

match查询(也就是match_query查询): 全文检索查询的一种,会对用户输入的内容进行分词,然后去倒排索引库检索

GET /索引库名/_search
{"query": {"match": {"字段名": "TEXT"}}
}

具体操作如下,为了让大家知道hotel索引库有哪些字段,我把当初建立gghotel索引库的类先放出来

package cn.itcast.hotel.constants;public class HotelConstants {public static final String MAPPING_TEMPLATE = "{\n" +"  \"mappings\": {\n" +"    \"properties\": {\n" +"      \"id\":{\n" +"        \"type\": \"keyword\"\n" +"      },\n" +"      \"name\":{\n" +"        \"type\": \"text\",\n" +"        \"analyzer\": \"ik_max_word\",\n" +"        \"copy_to\": \"all\"\n" +"      },\n" +"      \"address\":{\n" +"        \"type\": \"keyword\",\n" +"        \"index\":false\n" +"      },\n" +"      \"price\":{\n" +"        \"type\": \"integer\"\n" +"      },\n" +"      \"score\":{\n" +"        \"type\": \"integer\"\n" +"      },\n" +"      \"brand\":{\n" +"        \"type\": \"keyword\",\n" +"        \"copy_to\": \"all\"\n" +"      },\n" +"       \"city\":{\n" +"        \"type\": \"keyword\"\n" +"      },\n" +"       \"starName\":{\n" +"        \"type\": \"keyword\"\n" +"      },\n" +"       \"business\":{\n" +"        \"type\": \"keyword\",\n" +"        \"copy_to\": \"all\"\n" +"      },\n" +"       \"location\":{\n" +"        \"type\": \"geo_point\"\n" +"      },\n" +"      \"pic\":{\n" +"        \"type\":\"keyword\",\n" +"        \"index\": false\n" +"      },\n" +"      \"all\":{\n" +"        \"type\": \"text\",\n" +"        \"analyzer\": \"ik_max_word\"\n" +"      }\n" +"    }\n" +"  }\n" +"}";
}

注意: 我要解释一下,上面有个字段叫all,那个字段是当时自定义的,不清楚的话可回去看 '实用篇-ES-RestClient操作' 的 'hotel数据结构分析'。

all的作用如下图,相当于一个大的字段,里面存放了几个小字段,优点是我们可以在这个大的字段里面搜索到多个小字段的信息

然后,我们就正式开始全文检索查询,输入如下。注意all换成其它字段也没事,例如换成name字段。正常来说,我们检索name字段,就只在name字段检索匹配的分词文档,但是在all字段里面检索时,也会检索到name、brand、business字段,原因如上面那个图的copy_to属性

GET /hotel/_search
{"query": {"match": {"all": "外滩"}}
}//或者如下
# 第一种全文检索查询 match。查询name字段中包含'酒店'的文档
GET /hotel/_search
{"query": {"match": {"name": "酒店"}}
}

【第二种全文检索查询】

multi_match(也就是multi_match_query查询): 与match查询类似,只不过允许同时查询多个字段

GET /索引库名/_search
{"query": {"multi_match": {"query": "TEXT","字段名": ["FIELD1", " FIELD12"]}}
}
# 第二种全文检索查询 multi_match。查询business、brand、name字段中包含'如家'的文档,满足一个字段即可
GET /hotel/_search
{"query": {"multi_match": {"query": "如家","fields":["business","brand","name"]}}
}

三、精确查询

term: 根据词条的精确值查询,强调精确匹配

range: 根据值的范围查询,例如金额、时间

【第一种精确查询 term】

具体操作如下

查询city为杭州

GET /hotel/_search
{
"query":{"term":{"city":{"value":"杭州"}}}
}

【第二种精确查询 range】

GET /hotel/_search
{"query": {"range": {"price": {"gte": 10,"lte": 20}}}
}

四、地理查询

根据经纬度查询。常见的使用场景包括: 查询附近酒店、附近出租车、搜索附近的人。使用方式有很多种,介绍如下,这种最常用

geo_distance: 查询到指定中心点,以该点为圆心,distance为半径的圆,符合要求的所有文档

GET /索引库名/_search
{"query": {"geo_distance": {"distance": "15km","字段名": "31.21,121.5"}}
}

具体操作如下

输入如下DSL语句

GET /hotel/_search
{"query": {"geo_distance": {"distance": "15km","location": "31.21,121.5"}}
}

五、相关性算分

上面学的全文检索查询、精确查询、地理查询,这三种查询在es当中都称为简单查询,下面我们将学习复合查询。复合查询可以其它简单查询组合起来,实现更复杂的搜索逻辑,其中就有 '算分函数查询' 如下

首先保证你已经做好了 '实用篇-ES-环境搭建' ,创建了名为hotel的索引库,导入了批量文档。然后开始下面的操作

算分函数查询(function score): 可以控制文档相关性算分、控制文档排名。例如搜索'外滩' 和 '如家' 词条时,某个文档要是都能匹配这两个词条,那么在所有被搜索出来的文档当中,这个文档的位置就最靠前,简单说就是越匹配就排名越靠前

六、函数算分查询

上面只是简单演了相关性打分中的函数算分查询,文档与搜索关键字的相关度越高,打分就越高,排名就越靠前。不过,有的时候,我们希望人为地去控制控制文档的排名,例如某些文档我们就希望排名靠前一点,算分高一点,此时就需要使用函数算分查询,下面就来学习 '函数算分查询'

首先保证你已经做好了 '实用篇-ES-环境搭建' ,创建了名为gghotel的索引库,导入了批量文档。然后开始下面的操作

使用 ’函数算分查询(function score query)’,可以在原始的相关性算分的基础上加以修改,得到一个想要的算分,从而去影响文档的排名,语法如下

GET /索引库名/_search
{"query": {"function_score": {"query": { "match": {"字段": "词条"} },"functions": [{"filter": {"term": {"指定字段": "值"}},"算分函数": 函数结果}],"boost_mode": "加权模式"}}
}

function score需要考虑的三要素

1. 哪些文档需要算分加权

2. 算分函数是什么

3. 加权模式是什么

下面我们实现一个案例:给如家这个品牌的酒店排名靠前一些

考虑三要素

1. 哪些文档需要算分加权     brand为如家的酒店

2. 算分函数是什么               weigh

3. 加权模式是什么                相加/相乘都可

输入如下DSL语句,表示在 '如家' 这个品牌中,字段为'北京'的酒店排名靠前一些

GET /hotel/_search
{"query": {"function_score": {"query": {"match": {"brand": "如家"}},"functions": [{"filter": {"term": {"city": "北京"}},"weight": 2}],"boost_mode": "sum"}}
}

七、布尔查询

这是第二种复合查询

布尔查询不会去修改算分,而是把多个查询语句组合成一起,形成新查询,这些被组合的查询语句,被称为子查询。子查询的组合方式有如下四种

1、must:必须匹配每个子查询,类似"与"

2、should:选择性匹配子查询,类似"或"

3、must_not:必须不匹配,不参与算分,类似"非"

4、filter:必须匹配,不参与算分

首先保证你已经做好了 '实用篇-ES-环境搭建' ,创建了名为gghotel的索引库,导入了批量文档。然后开始下面的操作

输入如下DSL语句,表示搜索名字包含'如家',价格不高于400,在坐标31.21,121.5周围10km范围内的文档

GET /hotel/_search
{"query": {"bool": {"must": [{"match": {"name": "如家"}}],"must_not": [{"range": {"price": {"gt": 400}}}],"filter": [{"geo_distance": {"distance": "10km","xxlocation": {"lat": 31.21,"lon": 121.5}}}]}}
}

八、搜索结果处理

lasticsearch(称为es)支持对搜索的结果,进行排序,默认是根据 '相关度' 算分,也就是score值,根据score值进行排序。

可以排序的字段类型有: keyword类型、数值类型、地理坐标类型、日期类型

首先保证你已经做好了 '实用篇-ES-环境搭建' ,创建了名为gghotel的索引库,导入了批量文档。然后开始下面的操作

1. 排序

输入如下DSL语句,表示对所有的文档,根据评分(score)进行降序排序,如果评分相同就根据价格(price)升序排序

GET /hotel/_search
{"query": {"match_all": {}},"sort": [{"score": {"order": "desc"},"price": {"order": "asc"}}]
}

2. 分页

elasticsearch(称为es)默认情况下只返回前10 条数据。而如果要查询更多数据就需要修改分页参数,分页参数包括from和size,语法如下

GET /索引库名/_search
{"query": {"要查询的字段": {}},"from": 要查第几页, // 分页开始的位置,默认为0"size": 每页显示多少条文档, // 期望获取的文档总数"sort": [ //表示排序{"price": "排序方式"}]
}

输入如下DSL语句,表示对所有的文档,根据价格(price)进行升序排序,每次分页显示20条数据,看的是第六页

size默认是10,表示一页显示多少条文档。from默认是0,表示你要看的是第一页

GET /hotel/_search
{"query": {"match_all": {}},"sort": [{"price": {"order": "asc"}}],"from": 5,"size": 20
}

3. 搜索结果处理-高亮

高亮: 就是在搜索结果中把搜索关键字突出显示。高亮显示的原理如下

1、将搜索结果中的关键字用标签标记出来

2、在页面中给标签添加css样式

首先保证你已经做好了 '实用篇-ES-环境搭建' ,创建了名为gghotel的索引库,导入了批量文档。然后开始下面的操作

语法

GET /索引库名/_search
{"query": {"match": { //match表示带关键字的查询"字段": "TEXT"}},"highlight": {"fields": {"字段名": {"require_field_match": "false",//默认是true,表示 '字段' 要和 '字段名' 要一致。如果我们写的是不一致的话,就需要修改为false"pre_tags": "<em>",  // 用来标记高亮字段的前置标签,es会帮我们把标签加在关键字上。默认是<em>"post_tags": "</em>" // 用来标记高亮字段的后置标签,es会帮我们把标签加在关键字上。默认是</em>}}}
}

 总结

GET /索引库名/_search
{"query": {"match": {"字段名": "如家"}},"from": 0, // 分页开始的位置"size": 20, // 期望获取的文档总数"sort": [ {  "price": "asc" }, // 普通排序{"_geo_distance" : { // 距离排序"location" : "31.040699,121.618075", "order" : "asc","unit" : "km"}}],"highlight": {"fields": { // 高亮字段"字段名": {"pre_tags": "<em>",  // 用来标记高亮字段的前置标签"post_tags": "</em>" // 用来标记高亮字段的后置标签}}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/148093.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

阿里云ESSD云盘、高效云盘和SSD云盘介绍和IOPS性能参数表

阿里云服务器系统盘或数据盘支持多种云盘类型&#xff0c;如高效云盘、ESSD Entry云盘、SSD云盘、ESSD云盘、ESSD PL-X云盘及ESSD AutoPL云盘等&#xff0c;阿里云服务器网aliyunfuwuqi.com详细介绍不同云盘说明及单盘容量、最大/最小IOPS、最大/最小吞吐量、单路随机写平均时延…

SpringBoot-AOP-基础到进阶

SpringBoot-AOP AOP基础 学习完spring的事务管理之后&#xff0c;接下来我们进入到AOP的学习。 AOP也是spring框架的第二大核心&#xff0c;我们先来学习AOP的基础。 在AOP基础这个阶段&#xff0c;我们首先介绍一下什么是AOP&#xff0c;再通过一个快速入门程序&#xff0c…

【我和Python算法的初相遇】——体验递归的可视化篇

&#x1f308;个人主页: Aileen_0v0 &#x1f525;系列专栏:PYTHON数据结构与算法学习系列专栏&#x1f4ab;"没有罗马,那就自己创造罗马~" 目录 递归的起源 什么是递归? 利用递归解决列表求和问题 递归三定律 递归应用-整数转换为任意进制数 递归可视化 画…

Docker安装MinIO遇到的问题汇总——持续更新中

文章目录 Docker安装MinIO遇到的坑前言问题1&#xff1a;执行docker run报错Error response from daemon问题2&#xff1a;启动MinIO容器浏览器无法访问问题3&#xff1a;上传文件报错InvalidResponseException问题4&#xff1a;上传文件报错Connection refused最终的启动指令问…

Jmeter 吞吐量Per User作用

第一点&#xff1a;Per User仅在Total Execution时生效 第二点&#xff1a;Per User 选中后 聚合报告中将统计的的样本数将变成线程组配置的线程数*吞吐量控制器配置的执行样本数量&#xff08;前提是线程组配置执行接口的次数线程数*循环数 大于吞吐量控制器配置的执行样本数…

gittee启动器

前言 很多小伙伴反馈不是使用gitee&#xff0c;不会寻找好的项目&#xff0c;在拿到一个项目不知道从哪里入手。 鼠鼠我呀就是宠粉&#xff0c;中嘞&#xff0c;老乡。整&#xff01;&#xff01;&#xff01; git的基本指令 在使用gitee的时候呢&#xff0c;我们只需要记住…

Adversarially Robust Neural Architecture Search for Graph Neural Networks

Adversarially Robust Neural Architecture Search for Graph Neural Networks----《面向图神经网络的对抗鲁棒神经架构搜索》 摘要 图神经网络&#xff08;GNN&#xff09;在关系数据建模方面取得了巨大成功。尽管如此&#xff0c;它们仍然容易受到对抗性攻击&#xff0c;这对…

力扣周赛372 模拟 思维 位运算 java

100131. 使三个字符串相等 ⭐ AC code class Solution {public int findMinimumOperations(String s1, String s2, String s3) {int len1 s1.length();int len2 s2.length();int len3 s3.length();int n Math.min(len1,len2);n Math.min(n,len3);int i 0;while(i < n…

在Java代码中指定用JAXB的XmlElement注解的元素的顺序

例如&#xff0c;下面的类RegisterResponse 使用了XmlRootElement注解&#xff0c;同时也使用XmlType注解&#xff0c;并用XmlType注解的propOrder属性&#xff0c;指定了两个用XmlElement注解的元素出现的顺序&#xff0c;先出现flag&#xff0c;后出现enterpriseId&#xff0…

基环树(pseudotree)入门

目录 无向基环树找环&#xff0c;[题目](https://www.luogu.com.cn/problem/P8655)拓扑排序找环并查集找环dfs找环 内向基环树[2876. 有向图访问计数](https://leetcode.cn/problems/count-visited-nodes-in-a-directed-graph/description/)[2127. 参加会议的最多员工数](https…

python表白弹框

# codinggbk import tkinter as tk import random# 创建主窗口并隐藏 root tk.Tk() root.attributes(-alpha, 0) # 设置主窗口为不可见# 表白内容 message "cnmsb"# 创建弹框函数 def create_popup():x random.randint(0, root.winfo_screenwidth()) # 随机生成…

取数游戏2(动态规划java)

取数游戏2 题目描述 给定两个长度为n的整数列A和B&#xff0c;每次你可以从A数列的左端或右端取走一个数。假设第i次取走的数为ax&#xff0c;则第i次取走的数的价值vibi⋅ax&#xff0c;现在希望你求出∑vi的最大值。 输入格式 第一行一个数T &#xff0c;表示有T 组数据。…

【C++】:模板的使用

目录 1、泛型编程 2、函数模板 2.1、函数模板概念 2.2、函数模板格式 2.3、函数模板的原理 2.4、函数模板的实例化 2.6、模板参数的匹配原则 3、类模板 3.1、 类模板的定义格式 3.2、 类模板的实例化 4、非类型模板参数 5、模板的特化 5.1、函数模板特化 5.2、类模…

公网访问全能知识库工具AFFINE,Notion的免费开源替代

文章目录 公网访问全能知识库工具AFFINE&#xff0c;Notion的免费开源替代品前言1. 使用Docker安装AFFINE2. 安装cpolar内网穿透工具3. 配置AFFINE公网访问地址4. 实现公网远程访问AFFINE 公网访问全能知识库工具AFFINE&#xff0c;Notion的免费开源替代品 前言 AFFiNE 是一个…

ChatGPT + Flutter快速开发多端聊天机器人App

在这个充满创新和机遇的时代&#xff0c;软件开发领域正在经历一场前所未有的变革。为了满足日益增长的用户需求和提升用户体验&#xff0c;我们引入了ChatGPT和Flutter两大技术&#xff0c;旨在打造一款功能强大、易于扩展的多端聊天机器人App。 ChatGPT&#xff1a;对话式人工…

04 后端增删改查【小白入门SpringBoot + Vue3】

项目笔记&#xff0c;教学视频来源于B站青戈 https://www.bilibili.com/video/BV1H14y1S7YV 保证前面的都功能都实现后&#xff0c;接着往下走。 查 分页 接下来&#xff0c;实现前端页面分页功能。 前端分页组件 打开elementplus官网&#xff0c;找到合适的分页组件&…

如何解决swagger-editor在线接口调试时的跨域问题

文章目录 一&#xff0c;序言二&#xff0c;问题重现1. 运行swagger-editor2. 运行接口服务3. 问题重现步骤 三&#xff0c;解决问题思路1. 去除浏览器安全限制2. 服务器接口统一处理3. 委托nginx转发 四&#xff0c;完整接口代码传送 一&#xff0c;序言 在 Docker 运行swagg…

光敏传感器模块(YH-LDR)

目录 1. YH-LDR模块说明 1.1 简介 1.2 YH-LDR 模块的引脚说明 1.3 LDR 传感器工作原理与输出特性 2. 使用单片机系统控制 YH-LDR 模块 2.1 通用控制说明 1. YH-LDR模块说明 1.1 简介 YH-LDR 是野火设计的光强传感器&#xff0c;使用一个光敏电阻作为采集源&#x…

【C++】多线程的学习笔记(3)——白话文版(bushi

目录 前一篇内容&#xff08;mutex锁&#xff09; 前言 Condition Variable的简介 Condition Variable的使用方法 wait方法 wait for函数与wait until函数 notify函数 notify_one notify_all 注意 前一篇内容&#xff08;mutex锁&#xff09; 【C】多线程的学习笔记&…

pythongui实时闹钟

# codinggbk import tkinter as tk from time import strftime# 创建一个主窗口 root tk.Tk() root.title("实时闹钟")# 设置窗口的大小不可变 root.resizable(False, False)# 设置窗口始终保持在最上层 root.attributes(-topmost, True)# 更新时间的函数 def time(…