Seaborn 回归(Regression)及矩阵(Matrix)绘图

Seaborn中的回归包括回归拟合曲线图以及回归误差图。
Matrix图主要是热度图。

1. 回归及矩阵绘图API概述

seaborn中“回归”绘图函数共3个:

lmplot(回归统计绘图):figure级regplot函数,绘图同regplot完全相同。(lm指linear model)
+ regplot:axes级函数。绘制线性回归拟合。
+ residplot:axes级函数。绘制线性回归的误差图。(不能用lmplot绘制resid图)

seaborn中矩阵绘图函数共有2个:

  • heatmap:axes级函数。热度图,绘制一个颜色块矩阵。
  • clustermap:figure级函数。聚合热度图,绘制一个分层聚合的热度图。

figure级函数与axes级函数区别见Seaborn系列(一):绘图基础、函数分类、长短数据类型支持

2. 回归统计绘图

2.1 lmplot、regplot绘图

  • sns.lmplot(x=None,y=None,data=None):绘制线性回归拟合图,返回FacetGrid
  • sns.regplot(x=None,y=None,data=None)绘制线性回归拟合图,返回Axes
    • hue:分系列用不同的颜色绘制
    • col,row:指定参数不同值绘制到不同的行或列。
    • ci=95:置信区间的大小,取值0-100
    • order:指定拟合多项式阶数
    • scatter:是否绘制散点图
    • x_jitter,y_jitter:为x变量或y变量添加随机噪点。会导致绘制的散点移动,不会改变原始数据。
    • x_estimator:参数值为函数,如np.mean。对每个x值的所有y值用函数计算,绘制得到的点,并绘制误差线。
    • x_bins:当x不是离散值时x_estimator可以配合x_bins指定计算点和误差线数量
    • robust:对异常值降低权重
    • logistic:logistic=True时,假设y取值只有2个比如True和False,并用statsmodels中的逻辑回归模型回归。

sns.lmplot(data=tips, x="total_bill", y="tip")

regplot1_lmplot

hue、col、row参数与其他函数用法相同

sns.lmplot(data=tips, x="total_bill", y="tip", hue="sex", col="smoker")

regplot2_hue_col

图中拟合直线旁边透明颜色带是回归估计的置信区间,默认置信区间为95%。ci参数可以设置置信区间,ci取None则不绘制置信区间。

sns.lmplot(data=tips, x="total_bill", y="tip", ci=50)

regplot3_ci

sns.lmplot(data=tips, x="total_bill", y="tip", order=3)

regplot3_order

sns.lmplot(data=tips, x="total_bill", y="tip", scatter=False)

regplot3_scatter

x_jitter会随机改变图中散点的x坐标,y_jitter会随机改变图中散点的y坐标。

sns.lmplot(data=tips, x="total_bill", y="tip", y_jitter=10)

regplot4_jitter

sns.lmplot(data=tips, x="total_bill", y="tip", x_estimator=np.mean, x_bins=4)

regplot5_x_estimator_bins

``

robust参数为True时,会降低异常值的权重,在需要剔除异常值时,非常有用。
但是使用robust后,计算量会比较大,通常建议取ci=None加速。
注意robust参数需要安装statsmodels模块。

<span style="color:#333333"><span style="background-color:#f9f5e9"><code>import matplotlib.pyplot as plt
import seaborn as sns
ans = sns.load_dataset("anscombe")
dat = ans.loc[ans.dataset == "III"]sns.lmplot(data=dat, x="x", y="y", robust=True, ci=None)plt.show()
</code></span></span>

2.2 residplot绘图

  • sns.residplot(x=None,y=None,data=None)绘制线性回归拟合图的残差
    • order:回归拟合阶数
    • robust:对异常值降低权重
    • dropna:忽略空值
<span style="color:#333333"><span style="background-color:#f9f5e9"><code>sns.residplot(data=tips, x="total_bill", y="tip")
</code></span></span>

residplot

3. 矩阵图

3.1 heatmap热力图

  • sns.residplot(data):绘制热力图
    • annot:在单元格内显示数据。
    • fmt:设置annot参数数据显示格式。
    • cbar:是否显示颜色条。
    • cmap:设置colormap。
    • square:单元格是否方形。
    • linewidths:设置单元格线条宽度。
    • linecolor:设置单元格线条颜色。
<span style="color:#333333"><span style="background-color:#f9f5e9"><code>import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
data = np.random.rand(10, 10)sns.heatmap(data=data)plt.show()
</code></span></span>

heatmap1

<span style="color:#333333"><span style="background-color:#f9f5e9"><code>sns.heatmap(data=data, annot=True, fmt=".2f")
</code></span></span>

heatmap2_annot

<span style="color:#333333"><span style="background-color:#f9f5e9"><code>sns.heatmap(data=data, cmap="hsv", cbar=False, linewidths=0.5, linecolor="w")
</code></span></span>

heatmap3_style

3.2 clustermap分层聚合热力图

<span style="color:#333333"><span style="background-color:#f9f5e9"><code>import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
data = np.random.rand(10, 10)sns.clustermap(data=data)plt.show()
</code></span></span>

clustermap

clustermap说明详见Python可视化matplotlib&seborn15-聚类热图clustermap(建议收藏) - 知乎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/147515.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【计算机网络笔记】IPv6简介

系列文章目录 什么是计算机网络&#xff1f; 什么是网络协议&#xff1f; 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能&#xff08;1&#xff09;——速率、带宽、延迟 计算机网络性能&#xff08;2&#xff09;…

websocket详解

一、什么是Websocket WebSocket 是一种在单个 TCP 连接上进行 全双工 通信的协议&#xff0c;它可以让客户端和服务器之间进行实时的双向通信。 WebSocket 使用一个长连接&#xff0c;在客户端和服务器之间保持持久的连接&#xff0c;从而可以实时地发送和接收数据。 在 Web…

ElasticSearch快速入门

一、全文检索 1、什么是全文检索 全文索引是一种通过对文本内容进行全面索引和搜索的技术。它可以快速的在大量文本数据中查找包含特定关键词或短语的文档&#xff0c;并返回相关的搜索结果。 全文检索广泛应用于各种信息管理系统和应用中&#xff0c;如搜索引擎、文档管理系…

Android SdkManager简介

关于作者&#xff1a;CSDN内容合伙人、技术专家&#xff0c; 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 &#xff0c;擅长java后端、移动开发、商业变现、人工智能等&#xff0c;希望大家多多支持。 目录 一、导读二、概览三、 安装使用3.1 安装3.2 使用3.3 选项…

量化交易:开发传统趋势策略之---双均线策略

本文以双均线策略为例&#xff0c;描述如何在BigQuant策略平台上&#xff0c;开发一个传统的趋势跟踪策略&#xff0c;以更好地理解BigQuant回测机制。 双均线策略的策略思想是&#xff1a;当短期均线上穿长期均线时&#xff0c;形成金叉&#xff0c;此时买入股票。当短期均线…

【2023春李宏毅机器学习】生成式学习的两种策略

文章目录 1 各个击破2 一步到位3 两种策略的对比 生成式学习的两种策略&#xff1a;各个击破、一步到位 对于文本生成&#xff1a;把每一个生成的元素称为token&#xff0c;中文当中token指的是字&#xff0c;英文中的token指的是word piece。比如对于unbreakable&#xff0c;他…

优化|优化求解器自动调参

原文信息&#xff1a;MindOpt Tuner: Boost the Performance of Numerical Software by Automatic Parameter Tuning 作者&#xff1a;王孟昌 &#xff08;达摩院决策智能实验室MindOpt团队成员&#xff09; 一个算法开发者&#xff0c;可能会幻想进入这样的境界&#xff1a;算…

【Android】如何使用模拟器调试安卓项目

1、电脑安装逍遥模拟器&#xff0c;用来跑安卓项目。安装好模拟器之后&#xff0c;直接起安卓项目&#xff0c;自动会在选择设备处显示 2、如果前端是安卓后端是其他语言的话&#xff0c;这种前后端分离的模式&#xff0c;需要监听端口&#xff0c;原因是运行安卓和后端编译器都…

NC65 如何设置现金流量明细查询的查询框中核算账簿可多选??

NC65 如何设置现金流量明细查询的查询框中核算账簿可多选&#xff1f;&#xff1f; NC65 如何设置现金流量明细查询的查询框中核算账簿可多选&#xff1f;&#xff1f;效果如下图 解决方案二开&#xff0c;即在 nc.ui.gl.cashflowcase.CashFlowDetailQueryUI 的 onButtonQuer…

安装银河麒麟linux系统docker(docker-compose)环境,注意事项(一定能解决,有环境资源)

1&#xff1a;安装docker环境必须使用麒麟的版本如下 2&#xff1a;使用docker-compse up -d启动容器遇到的文件 故障1&#xff1a;如果运行docker-compose up 报“Cannot create redo log files because data files are corrupt or the database was not shut down cleanly a…

使用docker部署nacos分布式集群

本文目的 在服务器中部署nacos集群&#xff0c;并连接外置数据库关于外置的mysql部署和单例nacos如何部署请看下面的两个链接 如何使用docker部署mysql docker部署容器化mysql5.7-CSDN博客 如何使用docker部署nacos 容器化部署Nacos&#xff1a;从环境准备到启动-CSDN博客…

mfc140u.dll丢失的解决方法,以及针对每个解决mfc140u.dll丢失办法的优缺点

在使用电脑的过程中&#xff0c;有时会遇到一些与动态链接库文件&#xff08;DLL&#xff09;相关的错误。其中&#xff0c;mfc140u.dll丢失是一种常见的问题&#xff0c;它可能导致应用程序无法正常运行。在本文中&#xff0c;我们将探讨关于mfc140u.dll丢失的解决办法&#x…

WordPress主题WoodMart v7.3.2 WooCommerce主题和谐汉化版下载

WordPress主题WoodMart v7.3.2 WooCommerce主题和谐汉化版下载 WoodMart是一款出色的WooCommerce商店主题&#xff0c;它不仅提供强大的电子商务功能&#xff0c;还与流行的Elementor页面编辑器插件完美兼容。 主题文件在WoodMart Theme/woodmart.7.3.2.zip&#xff0c;核心在P…

利用 Pandoc + ChatGPT 优雅地润色论文,并保持 Word 公式格式:Pandoc将Word和LaTeX文件互相转化

论文润色完美解决方案&#xff1a;Pandoc 与 ChatGPT 的强强联合 写在最前面其他说明 一、通过 Pandoc 将 Word 转换为 LaTeX 的完整指南步骤 1: 安装 PandocWindows:macOS:Linux: 步骤 2: 准备 Word 文档步骤 3: 转换文档步骤 4: 检查并调整输出步骤 5: 编译 LaTeX 文档总结 二…

Ubuntu 22.04安装Rust编译环境并且测试

我参考的博客是《Rust使用国内Crates 源、 rustup源 |字节跳动新的 Rust 镜像源以及安装rust》 lsb_release -r看到操作系统版本是22.04,uname -r看到内核版本是uname -r。 sudo apt install -y gcc先安装gcc&#xff0c;要是结果给我的一样的话&#xff0c;那么就是安装好了…

【SpringBoot篇】分页查询 | 扩展SpringMvc的消息转换器

文章目录 &#x1f6f8;什么是分页查询&#x1f339;代码实现⭐问题&#x1f384;解决方法 做了几个项目&#xff0c;发现在这几个项目里面&#xff0c;都实现了分页查询效果&#xff0c;所以就总结一下&#xff0c;方便学习 我们基于黑马程序员的苍穹外卖来讲解分页查询的要点…

Java中如何通过路径表达式找值:XPath和JsonPath以及SpEL详解及对比

大家好&#xff0c;我是G探险者。 我们编程时&#xff0c;在前后端数据交互和传输过程中&#xff0c;往往需要对报文中的某个字段或者某个标签的值进行解析读取&#xff0c;报文通常是以json或者xml作为数据交换格式&#xff0c;而json和xml这两种格式的报文结构都是具备一定的…

docker容器自启动

场景 当服务器关机重启后&#xff0c;docker容器每次都要去docker start 容器id 怎么可以下次让它自启动呢&#xff1f; 解决 先 # docker ps -a 查到之前启动过的容器id # docker update --restartalways 容器id重启后&#xff0c;reboot&#xff0c;就不用再单独去启动容…

string类的总结

目录 1.为什么要学习string类 2.string的标准库 3.string类的常用接口说明 1.string类对象的常见构造 2.string类对象的容量操作 3.string类对象的3种遍历方法 3.1 [ ] 下标 3.2 基于范围的for循环 3.3 迭代器 4 string类对象的元素访问 4.1 operator[]&#xff1a; 4.…

目标检测—YOLO系列(二 ) 全面解读复现YOLOv1 PyTorch

精读论文 前言 从这篇开始&#xff0c;我们将进入YOLO的学习。YOLO是目前比较流行的目标检测算法&#xff0c;速度快且结构简单&#xff0c;其他的目标检测算法如RCNN系列&#xff0c;以后有时间的话再介绍。 本文主要介绍的是YOLOV1&#xff0c;这是由以Joseph Redmon为首的…