《视觉SLAM十四讲》-- 后端 2

文章目录

    • 09 后端 2
      • 9.1 滑动窗口滤波和优化
        • 9.1.1 实际环境下的 BA 结构
        • 9.1.2 滑动窗口法
      • 9.2 位姿图
        • 9.2.1 位姿图的意义
        • 9.2.2 位姿图优化

09 后端 2

9.1 滑动窗口滤波和优化

9.1.1 实际环境下的 BA 结构

由于计算机算力的限制,我们必须控制 BA 的规模,一种简单的思路是仅保留离当前时刻最近的 N N N 个关键帧,去掉时间上更早的关键帧。于是,BA 被固定在一个时间窗口内,离开这个窗口的即被抛弃,称为 滑动窗口法

或者像 ORB-SLAM 2 那样,定义一种称为 共视图 的结构,即与当前相机存在共同观测的关键帧构成的图。在 BA 优化时,按照某些原则在共视图内取一些关键帧和路标进行优化。

在这里插入图片描述

9.1.2 滑动窗口法

(1)现在考虑一个滑动窗口,假设窗口内有 N N N 个关键帧,他们的位姿表达为(李代数形式):

x 1 , x 2 , . . . , x N \boldsymbol{x}_1, \boldsymbol{x}_2,...,\boldsymbol{x}_N x1,x2,...,xN

假设这个滑动窗口中还有 M M M 个路标点 y 1 , y 2 , . . . , y M \boldsymbol{y}_1, \boldsymbol{y}_2,...,\boldsymbol{y}_M y1,y2,...,yM,用上一讲中的 BA 方法来处理这个滑动窗口,包括建立图优化模型,构建海森矩阵,在边缘化所有路标点来加速求解。边缘化时,考虑关键帧的位姿:

[ x 1 , … , x N ] T ∼ N ( [ μ 1 , … , μ N ] T , Σ ) (9-1) \left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right]^{\mathrm{T}} \sim N\left(\left[\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{N}\right]^{\mathrm{T}}, \boldsymbol{\Sigma}\right) \tag{9-1} [x1,,xN]TN([μ1,,μN]T,Σ)(9-1)

其中 μ k \boldsymbol{\mu}_k μk 为第 k k k 个关键帧的位姿均值, Σ \boldsymbol{\Sigma} Σ 为所有关键帧的协方差矩阵。显然,均值部分就是 BA 迭代之后的结果, Σ \boldsymbol{\Sigma} Σ 是对整个 BA 的 H \boldsymbol{H} H 矩阵进行边缘化之后的结果。

(2)当窗口结构改变时:

① 先在窗口中新增一个关键帧,以及观测到的路标点;

② 把窗口中一个旧的关键帧删除,可能会删除他观测到的路标点。

  • 新增一个关键帧和路标点

将新的关键帧 x N + 1 \boldsymbol{x}_{N+1} xN+1 按照正常的 BA 流程处理即可。

  • 删除一个旧的关键帧

删除旧的关键帧时,就比较麻烦。比如删除 x 1 \boldsymbol{x}_1 x1 ,但 x 1 \boldsymbol{x}_1 x1 并不是孤立的,它会和其它帧观测到同样的路标,将 x 1 \boldsymbol{x}_1 x1 边缘化后将导致整个问题不再稀疏(破坏了路标部分的对角块结构)。

在这里插入图片描述

(3)滑动窗口法适合 VO 系统,而不适合大规模建图的系统。

9.2 位姿图

9.2.1 位姿图的意义

(1)随着时间的流逝,机器人的运动轨迹会越来越长,地图规模也会越来越大,BA 的计算效率就会下降。同时我们发现,经过若干次迭代后,收敛的特征点位置变化很小,发散的外点则已被剔除,因此在后续优化中没有必要再将收敛点考虑进来,而是只把他们当做位姿估计的约束。

(2)放开思路,我们完全可以构建一个只有轨迹的图优化,而位姿节点的边,可以由两个关键帧之间通过特征匹配之后得到的运动估计来给定初始值。一旦初始估计完成,就不再优化那些路标点的位置,而只关心相机位姿之间的联系。这样的方式,省去了大量特征点优化的计算,只保留了关键帧的轨迹,构建了所谓的 位姿图

在这里插入图片描述

通过舍弃对路标点的优化,提高计算效率。

9.2.2 位姿图优化

位姿图中的节点表示相机位姿,用 T 1 , T 2 , . . . , T n , \boldsymbol{T}_1,\boldsymbol{T}_2,...,\boldsymbol{T}_n, T1,T2,...,Tn, 表示,边则是两个位姿节点之间相对运动的估计,这个估计可以通过特征点法或直接法得到。假设我们估计了 T i \boldsymbol{T}_i Ti T j \boldsymbol{T}_j Tj 之间的相对运动 T i j \boldsymbol{T}_{ij} Tij,则有

T i T i j = T j \boldsymbol{T}_i \boldsymbol{T}_{ij}=\boldsymbol{T}_j TiTij=Tj

也即

T i j = T i − 1 T j (9-2) \boldsymbol{T}_{ij}=\boldsymbol{T}_i^{-1}\boldsymbol{T}_j \tag{9-2} Tij=Ti1Tj(9-2)

写成李代数形式

ξ i j = ξ i − 1 ∘ ξ j = ln ⁡ ( T i − 1 T j ) ∨ (9-3) \boldsymbol{\xi}_{i j}=\boldsymbol{\xi}_{i}^{-1} \circ \boldsymbol{\xi}_{j}=\ln \left(\boldsymbol{T}_{i}^{-1} \boldsymbol{T}_{j}\right)^{\vee} \tag{9-3} ξij=ξi1ξj=ln(Ti1Tj)(9-3)

将式(9-2)中的 Δ T i j \Delta \boldsymbol{T}_{ij} ΔTij 移至方程右侧,则

T i j − 1 T i − 1 T j = I (9-4) \boldsymbol{T}_{ij}^{-1}\boldsymbol{T}_i^{-1}\boldsymbol{T}_j=\boldsymbol{I} \tag{9-4} Tij1Ti1Tj=I(9-4)

但实际上,并不可能完全相等。定义

e i j = ln ⁡ ( T i j − 1 T i − 1 T j ) ∨ (9-5) \boldsymbol{e}_{ij}=\ln( \boldsymbol{T}_{ij}^{-1}\boldsymbol{T}_i^{-1}\boldsymbol{T}_j)^{\vee} \tag{9-5} eij=ln(Tij1Ti1Tj)(9-5)

我们需要优化的是 T i \boldsymbol{T}_i Ti T j \boldsymbol{T}_j Tj,也即 ξ i \boldsymbol{\xi}_i ξi ξ j \boldsymbol{\xi}_j ξj,因此需要求这两个变量关于 e i j \boldsymbol{e}_{ij} eij 的导数。分别左乘一个左扰动: δ ξ i \boldsymbol{\delta \xi}_i δξi δ ξ j \boldsymbol{\delta \xi}_j δξj

e ^ i j = ln ⁡ ( T i j − 1 T i − 1 exp ⁡ ( ( − δ ξ i ) ∧ exp ⁡ ( ( δ ξ j ) ∧ T j ) ∨ (9-6) \boldsymbol{\hat{e}}_{ij}=\ln( \boldsymbol{T}_{ij}^{-1}\boldsymbol{T}_i^{-1} \exp((-\boldsymbol{\delta \xi}_i)^{\wedge}\exp((\boldsymbol{\delta \xi}_j)^{\wedge} \boldsymbol{T}_j)^{\vee} \tag{9-6} e^ij=ln(Tij1Ti1exp((δξi)exp((δξj)Tj)(9-6)

根据伴随矩阵的性质:

exp ⁡ ( ( Ad ⁡ ( T ) ξ ) ∧ ) = T exp ⁡ ( ξ ∧ ) T − 1 (9-7) \exp \left((\operatorname{Ad}(\boldsymbol{T}) \boldsymbol{\xi})^{\wedge}\right)=\boldsymbol{T} \exp \left(\boldsymbol{\xi}^{\wedge}\right) \boldsymbol{T}^{-1} \tag{9-7} exp((Ad(T)ξ))=Texp(ξ)T1(9-7)

稍作改变(把 Ad ⁡ ( T ) \operatorname{Ad}(\boldsymbol{T}) Ad(T) 移到右侧,$ \boldsymbol{T}^{-1}$ 移到左侧)

exp ⁡ ( ξ ∧ ) T = T exp ⁡ ( ( Ad ⁡ ( T − 1 ) ξ ) ∧ ) (9-9) \exp \left(\boldsymbol{\xi}^{\wedge}\right) \boldsymbol{T}=\boldsymbol{T} \exp \left(\left(\operatorname{Ad}\left(\boldsymbol{T}^{-1}\right) \boldsymbol{\xi}\right)^{\wedge}\right) \tag{9-9} exp(ξ)T=Texp((Ad(T1)ξ))(9-9)

那么,式(9-6)可写为(从右往左化简)

e ^ i j = ln ⁡ ( T i j − 1 T i − 1 exp ⁡ ( ( − δ ξ i ) ∧ ) exp ⁡ ( δ ξ j ∧ ) T j ‾ ) ∨ = ln ⁡ ( T i j − 1 T i − 1 exp ⁡ ( ( − δ ξ i ) ∧ ) T j ‾ exp ⁡ ( ( Ad ⁡ ( T j − 1 ) δ ξ j ) ∧ ) ) ∨ = ln ⁡ ( T i j − 1 T i − 1 T j exp ⁡ ( ( − Ad ⁡ ( T j − 1 ) δ ξ i ) ∧ ) exp ⁡ ( ( Ad ⁡ ( T j − 1 ) δ ξ j ) ∧ ) ) ∨ ≈ ln ⁡ ( T i j − 1 T i − 1 T j [ I − ( Ad ⁡ ( T j − 1 ) δ ξ i ) ∧ + ( Ad ⁡ ( T j − 1 ) δ ξ j ) ∧ ] ) ∨ ≈ e i j + ∂ e i j ∂ δ ξ i δ ξ i + ∂ e i j ∂ δ ξ j δ ξ j (9-10) \begin{aligned} \hat{\boldsymbol{e}}_{i j} &=\ln \left(\boldsymbol{T}_{i j}^{-1} \boldsymbol{T}_{i}^{-1} \exp \left(\left(-\boldsymbol{\delta} \boldsymbol{\xi}_{i}\right)^{\wedge}\right) \underline{\exp \left(\delta \boldsymbol{\xi}_{j}^{\wedge}\right) \boldsymbol{T}_{j}}\right)^{\vee} \\ &=\ln \left(\boldsymbol{T}_{i j}^{-1} \boldsymbol{T}_{i}^{-1} \underline{\exp \left(\left(-\boldsymbol{\delta} \boldsymbol{\xi}_{i}\right)^{\wedge}\right) \boldsymbol{T}_{j}} \exp \left(\left(\operatorname{Ad}\left(\boldsymbol{T}_{j}^{-1}\right) \boldsymbol{\delta} \boldsymbol{\xi}_{j}\right)^{\wedge}\right)\right)^{\vee} \\ &=\ln \left(\boldsymbol{T}_{i j}^{-1} \boldsymbol{T}_{i}^{-1} \boldsymbol{T}_{j} \exp \left(\left(-\operatorname{Ad}\left(\boldsymbol{T}_{j}^{-1}\right) \boldsymbol{\delta} \boldsymbol{\xi}_{i}\right)^{\wedge}\right) \exp \left(\left(\operatorname{Ad}\left(\boldsymbol{T}_{j}^{-1}\right) \boldsymbol{\delta} \boldsymbol{\xi}_{j}\right)^{\wedge}\right)\right)^{\vee} \\ & \approx \ln \left(\boldsymbol{T}_{i j}^{-1} \boldsymbol{T}_{i}^{-1} \boldsymbol{T}_{j}\left[\boldsymbol{I}-\left(\operatorname{Ad}\left(\boldsymbol{T}_{j}^{-1}\right) \boldsymbol{\delta} \boldsymbol{\xi}_{i}\right)^{\wedge}+\left(\operatorname{Ad}\left(\boldsymbol{T}_{j}^{-1}\right) \boldsymbol{\delta} \boldsymbol{\xi}_{j}\right)^{\wedge}\right]\right)^{\vee} \\ & \approx \boldsymbol{e}_{i j}+\frac{\partial \boldsymbol{e}_{i j}}{\partial \boldsymbol{\delta} \boldsymbol{\xi}_{i}} \boldsymbol{\delta} \boldsymbol{\xi}_{i}+\frac{\partial \boldsymbol{e}_{i j}}{\partial \boldsymbol{\delta} \boldsymbol{\xi}_{j}} \boldsymbol{\delta} \boldsymbol{\xi}_{j} \end{aligned} \tag{9-10} e^ij=ln(Tij1Ti1exp((δξi))exp(δξj)Tj)=ln(Tij1Ti1exp((δξi))Tjexp((Ad(Tj1)δξj)))=ln(Tij1Ti1Tjexp((Ad(Tj1)δξi))exp((Ad(Tj1)δξj)))ln(Tij1Ti1Tj[I(Ad(Tj1)δξi)+(Ad(Tj1)δξj)])eij+δξieijδξi+δξjeijδξj(9-10)

其中,第四步将两个指数一阶泰勒展开,相乘后舍去二次项;第四步到第五步则使用了 BCH 近似。

按照李代数上的求导法则,我们得到了误差关于两个位姿的雅克比矩阵,即

∂ e i j ∂ δ ξ i = − J r − 1 ( e i j ) Ad ⁡ ( T j − 1 ) \frac{\partial \boldsymbol{e}_{i j}}{\partial \boldsymbol{\delta} \boldsymbol{\xi}_{i}}=-\mathcal{J}_{r}^{-1}\left(\boldsymbol{e}_{i j}\right) \operatorname{Ad}\left(\boldsymbol{T}_{j}^{-1}\right) δξieij=Jr1(eij)Ad(Tj1)
∂ e i j ∂ δ ξ j = J r − 1 ( e i j ) Ad ⁡ ( T j − 1 ) (9-11) \frac{\partial \boldsymbol{e}_{i j}}{\partial \boldsymbol{\delta} \boldsymbol{\xi}_{j}}=\mathcal{J}_{r}^{-1}\left(\boldsymbol{e}_{i j}\right) \operatorname{Ad}\left(\boldsymbol{T}_{j}^{-1}\right) \tag{9-11} δξjeij=Jr1(eij)Ad(Tj1)(9-11)

J r \mathcal{J}_{r} Jr 的形式比较复杂,通常取它的近似,

J r − 1 ( e i j ) ≈ I + 1 2 [ ϕ e ∧ ρ e ∧ 0 ϕ e ∧ ] (9-12) \mathcal{J}_{r}^{-1}\left(e_{i j}\right) \approx \boldsymbol{I}+\frac{1}{2}\left[\begin{array}{cc} \phi_{e}^{\wedge} & \rho_{e}^{\wedge} \\ 0 & \phi_{e}^{\wedge} \end{array}\right] \tag{9-12} Jr1(eij)I+21[ϕe0ρeϕe](9-12)

了解雅克比求导后,剩下的部分就是普通的图优化。 记所有的边(也就是位姿)为 E \mathcal{E} E,则总体目标函数为

min ⁡ 1 2 ∑ i , j ∈ E e i j T Σ i j − 1 e i j (9-13) \min \frac{1}{2} \sum_{i, j \in \mathcal{E}} \boldsymbol{e}_{i j}^{\mathrm{T}} \boldsymbol{\Sigma}_{i j}^{-1} \boldsymbol{e}_{i j} \tag{9-13} min21i,jEeijTΣij1eij(9-13)

然后再用高斯牛顿法或 L-M 法优化求解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/146962.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

进程程序替换与exec系统调用

进程程序替换 进程程序替换是指将一个正在运行的进程替换为另一个可执行程序。它的本质是调用了Linux操作系统中的exec系统调用。而exec系统调用是一个家族函数,例如execl、execv、execle、execve等。它们的共同特点是当当前进程执行到该函数时,就会直接…

Bert浅谈

优点 首先,bert的创新点在于利用了双向transformer,这就跟openai的gpt有区别,gpt是采用单向的transformer,而作者认为双向transformer更能够融合上下文的信息。这里双向和单向的区别在于,单向只跟当前位置之前的tocke…

Nginx安装配置与SSL证书安装部署

一、Nginx Nginx是一款高性能的开源Web服务器和反向代理服务器,被广泛用于构建现代化的Web应用和提供静态内容。 nginx官网 这里下载nginx-1.24.0-zip Nginx是一款高性能的开源Web服务器和反向代理服务器,被广泛用于构建现代化的Web应用和提供静态内…

测试开发环境下centos7.9下安装docker的minio

按照以下方法进行 1、安装docker,要是生产等还是要安装docker-ce yum install docker 2、启动docker service docker start 3、 查看docker信息 docker info 4、加到启动里 systemctl enable docker.service 5、开始docker pull minio/minio 但报错&#x…

【机器学习7】优化算法

1 有监督学习的损失函数 1.1 分类问题 对二分类问题, Y{1,−1}, 我们希望sign f(xi,θ)yi, 最自然的损失函数是0-1损失, 函数定义特点0-1损失函数非凸、非光滑,很难直接对该函数进行优化Hinge损失函数当fy≥1时&…

汽车以太网IOP测试新利器

IOP测试目的 汽车以太网物理层IOP(Interoperability )测试,即测试被测对象以太网物理层之间的互操作性。用于验证车载以太网PHY能否在有限时间内建立稳定的链路;此外,还用于验证车载以太网PHY可靠性相关的诊断特性&am…

Linux环境下C++ 接入OpenSSL

接上一篇:Windows环境下C 安装OpenSSL库 源码编译及使用(VS2019)_vs2019安装openssl_肥宝Fable的博客-CSDN博客 解决完本地windows环境,想赶紧在外网环境看看是否也正常。毕竟现在只是HelloWorld级别的,等东西多了&am…

浅谈智能安全配电装置应用在银行配电系统中

【摘要】银行是国家重点安全保护部分,关系到社会资金的稳定,也是消防重点单位。消防安全是银行工作的重要组成部分。在银行配电系统中应用智能安全配电装置,可以提高银行的智能控制水平,有效预防电气火灾。 【关键词】银行&#…

如何快速下载mysql的不同版本并启动mysql服务?

如何快速下载mysql的不同版本并启动mysql服务? 下载mysql的安装版本 首先我们要使用到迅雷去下载,因为迅雷下载是很快的。在迅雷里面搜索下面的Mysql Installer安装窗口,如下图: 连接:https://dev.mysql.com/downlo…

fopen/fwrite/fread 对UNICODE字符写入的总结

windows对fopen函数进行了升级,可以支持指定文件的编码格式(ccs参数指定)。 例如: FILE *fp fopen("newfile.txt", "rt, ccsUTF-8"); 当以 ccs 模式打开文件时,进行读写操作的数据应为 UTF-16…

Selenium自动化测试框架

一.Selenium概述 1.1 什么是框架? 框架(framework)是一个框子——指其约束性,也是一个架子——指其支撑性。是一个基本概念上的 结构用于去解决或者处理复杂的问题。 框架是整个或部分系统的可重用设计,表现为一组抽象构件及…

【Machine Learning in R - Next Generation • mlr3】

本篇主要介绍mlr3包的基本使用。 一个简单的机器学习流程在mlr3中可被分解为以下几个部分: 创建任务 比如回归、分裂、生存分析、降维、密度任务等等挑选学习器(算法/模型) 比如随机森林、决策树、SVM、KNN等等训练和预测 创建任务 本次示…

C语言每日一题(32)环形链表

力扣网 141.环形链表 题目描述 给你一个链表的头节点 head ,判断链表中是否有环。 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾…

LLM大模型4位量化实战【GPTQ】

权重量化方面的最新进展使我们能够在消费类硬件上运行大量大型语言模型,例如 RTX 3090 GPU 上的 LLaMA-30B 模型。 这要归功于性能下降最小的新型 4 位量化技术,例如 GPTQ、GGML 和 NF4。 在上一篇文章中,我们介绍了简单的 8 位量化技术和出…

GZ038 物联网应用开发赛题第10套

2023年全国职业院校技能大赛 高职组 物联网应用开发 任 务 书 (第10套卷) 工位号:______________ 第一部分 竞赛须知 一、竞赛要求 1、正确使用工具,操作安全规范; 2、竞赛过程中如有异议,可向现场考…

Spring学习③__Bean管理

目录 IOC接口ApplicationContext 详解IOC操作Bean管理基于xml方式基于xml方式创建对象基于xml方式注入属性使用set方法进行注入通过有参数的构造进行注入p 名称空间注入(了解) 基于xml方式注入其他类型属性xml 注入数组类型属性 IOC接口 IOC思想基于IOC…

Linux 无名管道实现文件复制

无名管道 通过一个管道(假象)进行传输数据,但是这个管道的传输方式是单工(半双工)的,就是这个管道允许进行发送和接受数据,不过不能同时进行。 创建无名管道 这里用到一个pipe(&…

代码随想录算法训练营第三十九天【动态规划part02】 | 62.不同路径、63. 不同路径 II

62.不同路径 题目链接: 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 求解思路: 动规五部曲 确定dp数组及其下标含义:dp[i][j] 表示从(0,0)出发,到(i,j&#x…

性能测试【第三篇】Jmeter的使用

线程数:10 ,设置10个并发 Ramp-Up时间(秒):所有线程在多少时间内启动,如果设置5,那么每秒启动2个线程 循环次数:请求的重复次数,如果勾选"永远"将一直发送请求 持续时间时间:设置场景运行的时间 启动延迟:设置场景延迟启动时间 响应断言 响应断言模式匹配规则 包括…