2.4 矩阵的运算法则

矩阵是数字或 “元素” 的矩形阵列。当矩阵 A A A m m m n n n 列,则是一个 m × n m\times n m×n 的矩阵。如果矩阵的形状相同,则它们可以相加。矩阵也可以乘上任意常数 c c c。以下是 A + B A+B A+B 2 A 2A 2A 的例子,它们都是 3 × 2 3\times2 3×2 的矩阵: [ 1 2 3 4 0 0 ] + [ 2 2 4 4 9 9 ] = [ 3 4 7 8 9 9 ] , 2 [ 1 2 3 4 0 0 ] = [ 2 4 6 8 0 0 ] \begin{bmatrix}1&2\\3&4\\0&0\end{bmatrix}+\begin{bmatrix}2&2\\4&4\\9&9\end{bmatrix}=\begin{bmatrix}3&4\\7&8\\9&9\end{bmatrix},\kern 10pt2\begin{bmatrix}1&2\\3&4\\0&0\end{bmatrix}=\begin{bmatrix}2&4\\6&8\\0&0\end{bmatrix} 130240 + 249249 = 379489 ,2 130240 = 260480 矩阵的加法和向量的加法一样,每次处理一个元素。我们也可以将列向量看成是只有一列的矩阵( n = 1 n=1 n=1)。 − A -A A 可以看成是 c c c 乘矩阵 A A A c = − 1 c=-1 c=1),它与 A A A 中全部元素的符号都相反。 A A A 加上 − A -A A 是零矩阵,它的全部元素均为零。这些是基础知识,下面将考虑矩阵的乘法。

一、第一种方法:单个元素的计算

i i i 行第 j j j 列的元素记为 a i j a_{ij} aij A ( i , j ) A(i,j) A(i,j),第一行的 n n n 个元素分别记为 a 11 , a 12 , ⋯ , a 1 n a_{11},a_{12},\cdots,a_{1n} a11,a12,,a1n。左下角的元素是 a m 1 a_{m1} am1,右下角的元素是 a m n a_{mn} amn。行的数字 i i i 1 1 1 m m m,列的数字 j j j 1 1 1 n n n
若矩阵 A A A B B B 可以相乘时,这里总共讨论 4 4 4 种方法求 A B AB AB。矩阵 A A A B B B 相乘需要满足如下条件:
A B AB AB 可以相乘: 若 A A A n n n 列,则 B B B 必须由 n n n
A A A 3 × 2 3\times2 3×2 的矩阵时, B B B 可以是 2 × 1 2\times1 2×1(向量)、 2 × 2 2\times2 2×2(方阵)或 2 × 20 2\times20 2×20 的矩阵,必须是 2 2 2 行,但是不可以是 3 × 2 3\times2 3×2 的矩阵。 A A A 乘数 B B B 的每一列。 第一种矩阵相乘的方法是点积的方式,矩阵的乘法遵守以下法则: 矩阵乘法的基础法则 A B 乘 C 等于 A 乘 B C ( 2.4.1 ) \pmb{矩阵乘法的基础法则}\kern 10ptAB\,乘\,C\,等于\,A\,乘\,BC\kern 10pt(2.4.1) 矩阵乘法的基础法则ABC等于ABC(2.4.1)括号可以在 A B C ABC ABC 之间安全移动, ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC),线性代数也是基于这个法则。
假设 A A A m × n m\times n m×n 的矩阵, B B B n × p n\times p n×p 的矩阵,它们可以相乘,乘积 A B AB AB m × p m\times p m×p 的矩阵。 ( m × n ) × ( n × p ) = ( m × p ) , [ m rows n c o l u m n s ] [ n r o w s p columns ] = [ m rows p columns ] (\pmb m\times n)\times(n\times \pmb p)=(\pmb m\times \pmb p),\kern 10pt\begin{bmatrix}\pmb{m\,\,\textrm{rows}}\\n\,\,columns\end{bmatrix}\begin{bmatrix}n\,\,rows\\\pmb{p\,\textrm{columns}}\end{bmatrix}=\begin{bmatrix}\pmb{m\,\,\textrm{rows}}\\\pmb{p\,\textrm{columns}}\end{bmatrix} (m×n)×(n×p)=(m×p),[mrowsncolumns][nrowspcolumns]=[mrowspcolumns]一行乘一列是一种极端的情况, 1 × n 1\times n 1×n n × 1 n\times 1 n×1 的结果是 1 × 1 1\times1 1×1,这个数字就是点积。
任何情况下 A B AB AB 中的元素都是点积, A B AB AB 左上角的元素 ( 1 , 1 ) (1,1) (1,1) ( A 的行 1 ) ⋅ ( B 的列 1 ) (A\,的行\,1)\cdot(B\,的列\,1) (A的行1)(B的列1)。这就是第一种计算方法,是矩阵乘法常用的方法。计算 A A A 的每一行和 B B B 的每一列的点积。 1. A B 的行 i 列 j 元素是 ( A 的行 i ) ⋅ ( B 的列 j ) 1.\kern 8ptAB\,的行\,i\,列\,j\,元素是\kern 10pt(A\,的行\,i)\cdot(B\,的列\,j) 1.AB的行ij元素是(A的行i)(B的列j)Figure 2.8 是 4 × 5 4\times5 4×5 矩阵 A A A 的第二行 ( i = 2 ) (i=2) (i=2) 5 × 6 5\times6 5×6 矩阵 B B B 的第三列 ( j = 3 ) (j=3) (j=3),它们的点积在 A B AB AB 的行 2 2 2 3 3 3。矩阵 A B AB AB 的行数与 A A A ( 4 4 4 行)相同,列数与 B B B 6 6 6 列)相同。

在这里插入图片描述
例1】当且仅当方阵(Square matrices)的大小相同时,它们才可以相乘: [ 1 1 2 − 1 ] [ 2 2 3 4 ] = [ 5 6 1 0 ] \begin{bmatrix}1&\kern 7pt1\\2&-1\end{bmatrix}\begin{bmatrix}2&2\\3&4\end{bmatrix}=\begin{bmatrix}5&6\\1&0\end{bmatrix} [1211][2324]=[5160]第一个点积是 1 ⋅ 2 + 1 ⋅ 3 = 5 1\cdot2+1\cdot3=5 12+13=5,其它三个点积可以通过同样的方法计算。每个点积需要两次乘法,总共是 8 8 8 次。
如果 A A A B B B 都是 n × n n\times n n×n 的方阵,则 A B AB AB 也是 n × n n\times n n×n 的方阵,它包含 n 2 n^2 n2 次点积,即 A A A 的行数乘 B B B 的列数。每一个点积需要 n n n 次乘法,所以计算 A B AB AB 总共需要 n 3 n^3 n3 次乘法。当 n = 100 n=100 n=100 时,需要 10 0 3 = 1000000 100^3=1000000 1003=1000000 次乘法;当 n = 2 n=2 n=2 时,需要 2 3 = 8 2^3=8 23=8 次乘法。
目前有人找到只需要 7 7 7 次(会有额外的加法)的方法。但是比较难以处理,所以目前仍认为正常的科学计算需要 n 3 n^3 n3 次。

例2】假设 A A A 是一个行向量( 1 × 3 1\times3 1×3), B B B 是一个列向量( 3 × 1 3\times1 3×1),则 A B AB AB 1 × 1 1\times1 1×1(仅有一个点积,一个元素)。若反过来相乘, B A BA BA(一列乘一行)则会得到一个完整的 3 × 3 3\times3 3×3 矩阵,这样的乘法也是允许的! 列乘行 ( n × 1 ) ( 1 × n ) = ( n × n ) [ 0 1 2 ] [ 1 2 3 ] = [ 0 0 0 1 2 3 2 4 6 ] \begin{matrix}列乘行\\(n\times1)(1\times n)=(n\times n)\end{matrix}\kern 10pt\begin{bmatrix}0\\1\\2\end{bmatrix}\begin{bmatrix}1&2&3\end{bmatrix}=\begin{bmatrix}0&0&0\\1&2&3\\2&4&6\end{bmatrix} 列乘行(n×1)(1×n)=(n×n) 012 [123]= 012024036 一行乘一列是内积(inner product),这是点积的另一个名称。一列乘一行是外积(outer product)。这是一些矩阵乘法的极端情况。

二、第二和第三种方法:行和列

在大图(big picture)中, A A A B B B 的每一列,结果是 A B AB AB 的一列,该列是 A A A 列的组合。 A B \pmb{AB} AB 的每一列都是 A \pmb A A 列的线性组合。这是矩阵乘法的列图像: 2. 矩阵 A 乘 B 的每一列 A [ b 1 ⋯ b p ] = [ A b 1 ⋯ A b p ] 2.\kern 8pt矩阵\,A\,乘\,B\,的每一列\kern 10ptA[b_1\cdots\, b_p]=[Ab_1\cdots\,Ab_p] 2.矩阵AB的每一列A[b1bp]=[Ab1Abp]行图像则相反, A A A 的每一行乘整个矩阵 B B B A B AB AB 的一行。 A B \pmb{AB} AB 的每一行都是 B \pmb B B 行的线性组合 3. A 的每一行乘矩阵 B [ A 的行 i ] [ 1 2 3 4 5 6 7 8 9 ] = [ A B 的行 i ] 3.\kern 8ptA\,的每一行乘矩阵\,B\kern 10pt[A\,的行\,i]\begin{bmatrix}1&2&3\\4&5&6\\7&8&9\end{bmatrix}=[AB\,的行\,i] 3.A的每一行乘矩阵B[A的行i] 147258369 =[AB的行i]消元法中用到的是行运算( E 乘 A E\,乘\,A EA), A A − 1 AA^{-1} AA1 中用到的是列运算。“行-列图像” 有行与列的点积,手算矩阵时经常使用点积:有 m n p mnp mnp 次乘法/加法 步骤。 A B = ( m × n ) ( n × p ) = ( m × p ) , + m p 次点积,每次点积需要 n 个步骤 ( 2.4.2 ) AB=(m\times n)(n\times p)=(m\times p),+\kern 7ptmp\,次点积,每次点积需要\,n\,个步骤\kern 5pt(2.4.2) AB=(m×n)(n×p)=(m×p),+mp次点积,每次点积需要n个步骤(2.4.2)

三、第四种方法:列乘行

矩阵的第四种乘法是列乘行,然后将其相加: 4. A 的列 1 至列 n ,乘 B 的行 1 至行 n ,将全部矩阵相加 4.\kern 8ptA\,的列\,1\,至列\,n,乘\,B\,的行\,1\,至行\,n,将全部矩阵相加 4.A的列1至列n,乘B的行1至行n,将全部矩阵相加 A A A 的列 1 1 1 B B B 的行 1 1 1 A A A 的列 2 , 3 2,3 2,3 B B B 的行 2 , 3 2,3 2,3,然后相加: [ col 1 col 2 col 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ] [ row 1 ⋯ row 2 ⋯ row 3 ⋯ ] = ( col 1 ) ( row 1 ) + (col 2)(row 2)+(col 3)(row 3) \begin{bmatrix}\pmb{\textrm{col}\,1}&\pmb{\textrm{col\,2}}&\pmb{\textrm{col\,3}}\\\pmb \cdot&\pmb\cdot&\pmb\cdot\\ \pmb\cdot&\pmb\cdot&\pmb\cdot\end{bmatrix}\begin{bmatrix}\pmb{\textrm{row\,1}}&\pmb\cdots&\\\pmb{\textrm{row\,2}}&\pmb\cdots\\\pmb{\textrm{row\,3}}&\pmb\cdots\end{bmatrix}=\pmb{(\textrm {col\,1})(\textrm{row\,1})+\textrm{(col\,2)(row\,2)+(col\,3)(row\,3)}} col1col2col3 row1row2row3 =(col1)(row1)+(col2)(row2)+(col3)(row3) A A A B B B 均是 2 × 2 2\times2 2×2 的矩阵时 A B = [ a b c d ] [ E F G H ] = [ a E + b G a F + b H c E + d G c F + d H ] AB=\begin{bmatrix}\pmb a&b\\\pmb c&d\end{bmatrix}\begin{bmatrix}\pmb E&\pmb F\\G&H\end{bmatrix}=\begin{bmatrix}\pmb{aE}+bG&\pmb{aF}+bH\\\pmb{cE}+dG&\pmb{cF}+dH\end{bmatrix} AB=[acbd][EGFH]=[aE+bGcE+dGaF+bHcF+dH] A 的列乘 B 的行,再相加 A B = [ a c ] [ E F ] + [ b d ] [ G H ] ( 2.4.3 ) A\,的列乘\,B\, 的行,再相加\kern 10ptAB=\begin{bmatrix}\pmb a\\\pmb c\end{bmatrix}\begin{bmatrix}\pmb E&\pmb F\end{bmatrix}+\begin{bmatrix}b\\d\end{bmatrix}\begin{bmatrix}G&H\end{bmatrix}\kern 6pt(2.4.3) A的列乘B的行,再相加AB=[ac][EF]+[bd][GH](2.4.3) A A A 的列 k k k B B B 的行 k k k 得到一个矩阵,令 k = 1 , 2 , ⋯ , n k=1,2,\cdots,n k=1,2,,n,然后将所有的矩阵相加得到 A B AB AB
如果 A B AB AB ( m × n ) ( n × p ) (m\times n)(n\times p) (m×n)(n×p),则 n n n 个矩阵都是列与行相乘的 m × p m\times p m×p 矩阵。该方法同样需要 m n p mnp mnp 次乘法,只是顺序不同。

四、矩阵运算法则

矩阵运算遵循以下六个法则,还有一个法则是不正确的。矩阵可以是方形的也可以是矩形的。下面是三个加法法则: A + B = B + A ( 交换律 commutative law ) c ( A + B ) = c A + c B ( 分配律 distributive law ) A + ( B + C ) = ( A + B ) + C ( 结合律 associative law ) \begin{matrix}\kern20ptA+B=B+A\kern 17pt&\kern 10pt(交换律\,\textrm{commutative\,\,law})\\c(A+B)=cA+cB&\kern 3pt(分配律\,\textrm{distributive\,\,law})\\A+(B+C)=(A+B)+C&(结合律\,\textrm{associative\,\,law})\end{matrix} A+B=B+Ac(A+B)=cA+cBA+(B+C)=(A+B)+C(交换律commutativelaw)(分配律distributivelaw)(结合律associativelaw)另外三个法则是乘法法则,注意 A B = B A AB=BA AB=BA 通常来说都是错误的: A B ≠ B A ( 交换律通常不成立 ) A ( B + C ) = A B + A C ( 左分配律 ) ( A + B ) C = A C + B C ( 右分配律 ) A ( B C ) = A ( B C ) ( A B C 的结合律 ) ( 不需要括号 ) \begin{matrix}AB\neq BA&\kern 40pt(交换律通常不成立)\\A(B+C)=AB+AC&(左分配律)\\(A+B)C=AC+BC&(右分配律)\\A(BC)=A(BC)&\kern 81pt(ABC的结合律)(不需要括号)\end{matrix} AB=BAA(B+C)=AB+AC(A+B)C=AC+BCA(BC)=A(BC)(交换律通常不成立)(左分配律)(右分配律)(ABC的结合律)(不需要括号) A A A B B B 不是方阵时, A B AB AB B A BA BA 的大小不同,也不可能相等(假设可以相乘)。对于方阵,绝大部分情况都有 A B ≠ B A AB\neq BA AB=BA A B = [ 0 0 1 0 ] [ 0 1 0 0 ] = [ 0 0 0 1 ] , 但是 B A = [ 0 1 0 0 ] [ 0 0 1 0 ] = [ 1 0 0 0 ] AB=\begin{bmatrix}0&0\\1&0\end{bmatrix}\begin{bmatrix}0&1\\0&0\end{bmatrix}=\begin{bmatrix}0&0\\0&1\end{bmatrix},\,但是\,BA=\begin{bmatrix}0&1\\0&0\end{bmatrix}\begin{bmatrix}0&0\\1&0\end{bmatrix}=\begin{bmatrix}1&0\\0&0\end{bmatrix} AB=[0100][0010]=[0001],但是BA=[0010][0100]=[1000] A I = I A AI=IA AI=IA 是成立的,所有的方阵与 I I I 相乘都满足交换律,与 c I cI cI 也一样。只有这些矩阵的乘法顺序才可交换。
法则 A ( B + C ) = A B + A C A(B+C)=AB+AC A(B+C)=AB+AC 可以一次证明一列。对于第一列 A ( b + c ) = A b + A c A(\boldsymbol b+\boldsymbol c)=A\boldsymbol b+A\boldsymbol c A(b+c)=Ab+Ac,这个是所有事情的关键 —— 线性
法则 A ( B C ) = ( A B ) C A(BC)=(AB)C A(BC)=(AB)C 表示可以先乘 B C BC BC 也可以先乘 A B AB AB,这个法则很有用,是矩阵乘法的关键。
A = B = C A=B=C A=B=C 且为方阵时, ( A (A (A A 2 ) A^2) A2) 等于 ( A 2 (A^2 (A2 A ) A) A)。它们的乘积都是 A 3 A^3 A3。矩阵的幂 A p A^p Ap 和数字的运算法则一致: A p = A A A ⋯ A ( p 个因子 ) ( A p ) ( A q ) = A p + q ( A p ) q = A p q A^p=AAA\cdots A\,(p\,个因子)\kern 8pt(A^p)(A^q)=A^{p+q}\kern 8pt(A^p)^q=A^{pq} Ap=AAAA(p个因子)(Ap)(Aq)=Ap+q(Ap)q=Apq这是指数的一般法则, A 3 A^3 A3 A 4 A^4 A4 A 7 A^7 A7 A 3 A^3 A3 4 4 4 次方是 A 12 A^{12} A12。当 p p p q q q 是零或负数时,这个法则任然成立。假设 A A A − 1 -1 1 次方 —— 逆矩阵 A − 1 A^{-1} A1 A 0 = I A^0=I A0=I 是单位矩阵,类似 2 0 = 1 2^0=1 20=1
对于数字 a − 1 = 1 / a a^{-1}=1/a a1=1/a,对矩阵来说逆矩阵写成 A − 1 A^{-1} A1(不是 I / A I/A I/A,除了MATLAB)。除了 a = 0 a=0 a=0 以外的数都有倒数,但是对于矩阵 A A A 有没有逆矩阵是线性代数的核心问题。

五、分块矩阵与分块乘法

矩阵可以被分割成块(blocks,小一些的矩阵)。下面是一个 4 × 6 4\times6 4×6 的矩阵,分割成 2 × 2 2\times2 2×2 的块,本例中每个块都是单位矩阵 I I I 4 × 6 的矩阵分成 2 × 2 的分块矩阵 得到 2 × 3 个分块矩阵 A = [ 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 ] = [ I I I I I I ] \begin{matrix}4\times6\,的矩阵分成\\2\times2\,的分块矩阵\\\kern 20pt得到\,2\times3\,个分块矩阵\end{matrix}\kern 15ptA=\left[\begin{array}{cc|cc|cc}1&0&1&0&1&0\\0&1&0&1&0&1\\\hline1&0&1&0&1&0\\0&1&0&1&0&1\end{array}\right]=\begin{bmatrix}I&I&I\\I&I&I\end{bmatrix} 4×6的矩阵分成2×2的分块矩阵得到2×3个分块矩阵A= 101001011010010110100101 =[IIIIII]如果 B B B 也是 4 × 6 4\times6 4×6 的矩阵,且大小匹配,则可以对 A + B A+B A+B 匹配的方块相加。
b \boldsymbol b b 放在 A A A 旁边就变成增广矩阵, [ A b ] \begin{bmatrix}A&\boldsymbol b\end{bmatrix} [Ab] 有两个大小不一样的方块,这也是分块矩阵,左乘上消元矩阵得到 [ E A E b ] \begin{bmatrix}EA&E\boldsymbol b\end{bmatrix} [EAEb]。只要形状匹配,那么分块相乘就没有问题。 分块乘法 : 如果 A 的分块可以乘 B 的分块,那么 A B 就可以分块相乘。 A 的列分割必须和 B 的行分割相匹配。 [ A 11 A 12 A 21 A 22 ] [ B 11 B 21 ] = [ A 11 B 11 + A 12 B 21 A 21 B 11 + A 22 B 21 ] ( 2.4.4 ) \pmb{分块乘法}:如果\,A\,的分块可以乘\,B\,的分块,那么\,AB\,就可以分块相乘。A\,的列分割必须和\,B\,的行分割相匹配。\\\begin{bmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{bmatrix}\begin{bmatrix}B_{11}\\B_{21}\end{bmatrix}=\begin{bmatrix}A_{11}B_{11}+A_{12}B_{21}\\A_{21}B_{11}+A_{22}B_{21}\end{bmatrix}\kern 15pt(2.4.4) 分块乘法:如果A的分块可以乘B的分块,那么AB就可以分块相乘。A的列分割必须和B的行分割相匹配。[A11A21A12A22][B11B21]=[A11B11+A12B21A21B11+A22B21](2.4.4)若每个分块都是数字( 1 × 1 1\times1 1×1 的矩阵),这种特殊情况就是矩阵的乘法,它们是一致的。上式所有的 A A A 都要放在 B B B 之前,因为 A B AB AB B A BA BA 是不同的。
重点: 当对矩阵进行分块时,经常更容易看出它们如何作用的。如上例中分块矩阵是单位矩阵 I I I 就比原来的 4 × 6 4\times6 4×6 的矩阵更清晰。

例3】(重要的特殊情况)将矩阵 A A A 每列分成一块,共 n n n 列,矩阵 B B B 每行分成一块,共 n n n 行,则 A B AB AB 的分块乘法就是列乘行相加: 列乘行 [ ∣ ∣ a 1 ⋯ a n ∣ ∣ ] [ − b 1 − ⋯ − b n − ] = [ a 1 b 1 + ⋯ + a n b n ] ( 2.4.5 ) \pmb{列乘行}\kern 10pt\begin{bmatrix}|& &|\\a_1&\cdots&a_n\\|& &|\end{bmatrix}\begin{bmatrix}-&b_1&-\\&\cdots\\-&b_n&-\end{bmatrix}=\begin{bmatrix}a_1b_1+\cdots+a_nb_n\end{bmatrix}\kern 15pt(2.4.5) 列乘行 a1an b1bn =[a1b1++anbn](2.4.5)这就是第四种矩阵乘法。下面是具体的例子: [ 1 4 1 5 ] [ 3 2 1 0 ] = [ 1 1 ] [ 3 2 ] + [ 4 5 ] [ 1 0 ] = [ 3 2 3 2 ] + [ 4 0 5 0 ] = [ 7 2 8 2 ] \begin{bmatrix}1&4\\1&5\end{bmatrix}\begin{bmatrix}3&2\\1&0\end{bmatrix}=\begin{bmatrix}1\\1\end{bmatrix}\begin{bmatrix}3&2\end{bmatrix}+\begin{bmatrix}4\\5\end{bmatrix}\begin{bmatrix}1&0\end{bmatrix}=\begin{bmatrix}3&2\\3&2\end{bmatrix}+\begin{bmatrix}4&0\\5&0\end{bmatrix}=\begin{bmatrix}7&2\\8&2\end{bmatrix} [1145][3120]=[11][32]+[45][10]=[3322]+[4500]=[7822]总结:通常使用行乘列求矩阵的乘积,要 4 4 4 个点积( 8 8 8 次乘法)。列乘行得到两个完整的矩阵(同样是 8 8 8 次乘法)。

例4】(用分块消元)假设 A A A 的第一列是 1 , 3 , 4 1,3,4 1,3,4,要将 3 , 4 3,4 3,4 变成 0 , 0 0,0 0,0,需要减去主元行的 3 3 3 倍和 4 4 4 倍。这些行运算就是消元矩阵 E 21 E_{21} E21 E 32 E_{32} E32 E 21 = [ 1 0 0 − 3 1 0 0 0 1 ] , E 31 = [ 1 0 0 0 1 0 − 4 0 1 ] E_{21}=\begin{bmatrix}\kern 7pt1&0&0\\-3&1&0\\\kern 7pt0&0&1\end{bmatrix},\kern 5ptE_{31}=\begin{bmatrix}\kern 7pt1&0&0\\\kern 7pt0&1&0\\-4&0&1\end{bmatrix} E21= 130010001 ,E31= 104010001 分块的思想就是用一个矩阵矩阵 E E E 完成上面的两次消元,该矩阵将第一列的主元 a = 1 a=1 a=1 下面的数字全部变成 0 0 0 E = [ 1 0 0 − 3 1 0 − 4 0 1 ] 乘 [ 1 x x 3 x x 4 x x ] 得到 [ 1 x x 0 y y 0 z z ] E=\begin{bmatrix}\kern 7pt\pmb1&0&0\\\pmb{-3}&1&0\\\pmb{-4}&0&1\end{bmatrix}乘\begin{bmatrix}\pmb1&x&x\\\pmb3&x&x\\\pmb4&x&x\end{bmatrix}得到\begin{bmatrix}\pmb1&x&x\\\pmb0&y&y\\\pmb0&z&z\end{bmatrix} E= 134010001 134xxxxxx 得到 100xyzxyz 使用逆矩阵,分块矩阵 E E E 可以对整个列消元(将被消元部分看成一块)。假设矩阵有 4 4 4 A , B , C , D A,B,C,D A,B,C,D,通过分块消去 C C C 分块消元 [ I 0 − C A − 1 I ] [ A B C D ] = [ A B 0 D − C A − 1 B ] ( 2.4.6 ) \pmb{分块消元}\kern 10pt\left[\begin{array}{c|c}I&0\\\hline-CA^{-1}&I\end{array}\right]\left[\begin{array}{c|c}A&B\\\hline C&D\end{array}\right]=\left[\begin{array}{c|c}A&B\\\hline0&D-CA^{-1}B\end{array}\right]\kern 15pt(2.4.6) 分块消元[ICA10I][ACBD]=[A0BDCA1B](2.4.6)消元法从第二行减去第一行 [ A B ] \begin{bmatrix}A&B\end{bmatrix} [AB] 左乘 C A − 1 CA^{-1} CA1(以前是 c / a c/a c/a),使得块 C C C 变为了 0 0 0 块,块 D D D 变为 S = D − C A − 1 B S=D-CA^{-1}B S=DCA1B
分块消元是一次处理一列,主元方块是 A A A,最后的方块是 D − C A − 1 B D-CA^{-1}B DCA1B,如同 d − c b / a d-cb/a dcb/a,这个称为舒尔补(Schur complement)。

六、主要内容总结

  1. A B AB AB ( i , j ) (i,j) (i,j) 元素是 ( A 的行 i ) ⋅ ( B 的列 j ) (A的行\,i)\cdot(B的列\,j) (A的行i)(B的列j)
  2. m × n m\times n m×n 的矩阵乘 n × p n\times p n×p 的矩阵会有 m n p mnp mnp 次乘法。
  3. A A A B C BC BC 等于 A B AB AB C C C(非常重要)。
  4. A B AB AB 也是这 n n n 个矩阵的和: ( A 的列 j ) ⋅ ( B 的行 j ) (A的列\,j)\cdot(B的行\,j) (A的列j)(B的行j)
  5. 当分块矩阵的形状能正确匹配时,就可以使用分块乘法。
  6. 分块消元会产生舒尔补 D − C A − 1 B \,D-CA^{-1}B DCA1B

七、例题

例5】一个图形(或网络)有 n n n 个节点。它的邻接矩阵(adjacency matrix) S S S n × n n\times n n×n。它是一个 0 − 1 0-1 01 矩阵,当节点 i i i 与 节点 j j j 有边相连时 S i j = 1 S_{ij}=1 Sij=1

在这里插入图片描述 无向图的邻接矩阵是方阵且对称,边的两个方向均可以行走 \bold{无向图的邻接矩阵是方阵且对称,边的两个方向均可以行走} 无向图的邻接矩阵是方阵且对称,边的两个方向均可以行走矩阵 S 2 S^2 S2 有一个很有用的解释, S i j 2 S^2_{ij} Sij2 是节点 i i i 与节点 j j j 之间长度为 2 \pmb 2 2 的路径的个数。上图中节点 2 2 2 与节点 3 3 3 之间长度为 2 2 2 的路径有两个:经过 1 1 1 的路径 2 − 1 − 3 2-1-3 213,经过 4 4 4 的路径 2 − 4 − 3 2-4-3 243。节点 1 1 1 到节点 1 1 1 长度为 2 2 2 的路径也是 2 2 2 个: 1 − 2 − 1 1-2-1 121 1 − 3 − 1 1-3-1 131 S 2 = [ 2 1 1 2 1 3 2 1 1 2 3 1 2 1 1 2 ] , S 3 = [ 2 5 5 2 5 4 5 5 5 5 4 5 2 5 5 2 ] S^2=\begin{bmatrix}\pmb 2&1&1&2\\1&3&\pmb 2&1\\1&2&3&1\\2&1&1&2\end{bmatrix},\kern 10ptS^3=\begin{bmatrix}2&\pmb 5&5&2\\5&4&5&5\\5&5&4&5\\2&5&5&2\end{bmatrix} S2= 2112132112312112 ,S3= 2552545555452552 你可以找到 5 5 5 条节点 1 1 1 到节点 2 2 2 长度为 3 3 3 的路径吗?
5 5 5 条: 1 − 2 − 1 − 2 , 1 − 2 − 3 − 2 , 1 − 2 − 4 − 2 , 1 − 3 − 1 − 2 , 1 − 3 − 4 − 2 1-2-1-2,1-2-3-2,1-2-4-2,1-3-1-2,1-3-4-2 1212,1232,1242,1312,1342
为什么 S N S^{N} SN 可以计算出两个节点之间长度为 N N N 的所有路径数呢?我们从 S 2 S^2 S2 开始看某一元素的点积: ( S 2 ) i j = ( S 的行 i ) ⋅ ( S 的列 j ) = S i 1 S 1 j + S i 2 S 2 j + S i 3 S 3 j + S i 4 S 4 j ( 2.4.7 ) (S^2)_{ij}=(S的行\,i)\cdot(S的列\,j)=S_{i1}S_{1j}+S_{i2}S_{2j}+S_{i3}S_{3j}+S_{i4}S_{4j}\kern 20pt(2.4.7) (S2)ij=(S的行i)(S的列j)=Si1S1j+Si2S2j+Si3S3j+Si4S4j(2.4.7)若存在两步的路径 i → 1 → j i\rightarrow 1\rightarrow j i1j,第一个乘法得到 S i 1 S 1 j = ( 1 ) ( 1 ) = 1 S_{i1}S_{1j}=(1)(1)=1 Si1S1j=(1)(1)=1,若不存在 i → 1 → j i\rightarrow1\rightarrow j i1j 的路径,那么要么 i → 1 i\rightarrow1 i1 不存在,要么就是 1 → j 1\rightarrow j 1j 不存在,此时 S i 1 S 1 j = 0 S_{i1}S_{1j}=0 Si1S1j=0
( S 2 ) i j (S^2)_{ij} (S2)ij 会将所有的两步路径 i → k → j i\rightarrow k\rightarrow j ikj 的个数累加起来,得到总路径数。同样, S N − 1 S S^{N-1}S SN1S 会计算 N N N 步路径数, S N − 1 S^{N-1} SN1 表示从 i i i k k k ( N − 1 ) (N-1) (N1) 步的路径数, S S S 表示从 k k k j j j 的那一步路径数。矩阵乘法非常适合计算图形的路径,也可以看成公司内员工之间同相的频道个数。

例6】下面有三个矩阵,什么时候 A B = B A AB=BA AB=BA ?什么时候 B C = C B BC=CB BC=CB ?什么时候 A ( B C ) = ( A B ) C A(BC)=(AB)C A(BC)=(AB)C ?给出矩阵元素 p , q , r , z p,q,r,z p,q,r,z 要满足的条件。 A = [ p 0 q r ] , B = [ 1 1 0 1 ] , C = [ 0 z 0 0 ] A=\begin{bmatrix}p&0\\q&r\end{bmatrix},\kern 5ptB=\begin{bmatrix}1&1\\0&1\end{bmatrix},\kern 5ptC=\begin{bmatrix}0&z\\0&0\end{bmatrix} A=[pq0r],B=[1011],C=[00z0]如果 p , q , r , 1 , z p,q,r,1,z p,q,r,1,z 都是 4 × 4 4\times4 4×4 的块而不是数字,答案还一样吗?
解: 首先, A ( B C ) = ( A B ) C A(BC)=(AB)C A(BC)=(AB)C 是永远正确的,该等式中括号并不需要,但是矩阵的顺序不能变。
通常情况下 A B ≠ B A AB\neq BA AB=BA A B = [ p p q q + r ] , B A = [ p + q r q r ] AB=\begin{bmatrix}p&p\\q&q+r\end{bmatrix},\kern 5ptBA=\begin{bmatrix}p+q&r\\q&r\end{bmatrix} AB=[pqpq+r],BA=[p+qqrr]若要求 A B = B A AB=BA AB=BA,则需要满足 q = 0 , p = r q=0,p=r q=0,p=r
B C = C B BC=CB BC=CB 是一个巧合: B C = [ 0 z 0 0 ] , C B = [ 0 z 0 0 ] BC=\begin{bmatrix}0&z\\0&0\end{bmatrix},\kern 5ptCB=\begin{bmatrix}0&z\\0&0\end{bmatrix} BC=[00z0],CB=[00z0] p , q , r , z p,q,r,z p,q,r,z 均是 4 × 4 4\times 4 4×4 的块, 1 1 1 变为 I I I,那么所有所有的乘积也是一样的,所有答案也一样。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/146353.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【算法】距离(最近公共祖先节点)

题目 给出 n 个点的一棵树,多次询问两点之间的最短距离。 注意: 边是无向的。所有节点的编号是 1,2,…,n。 输入格式 第一行为两个整数 n 和 m。n 表示点数,m 表示询问次数; 下来 n−1 行,每行三个整数 x,y,k&am…

【Flink】Flink任务缺失Jobmanager日志的问题排查

Flink任务缺失Jobmanager日志的问题排查 问题不是大问题,不是什么代码级别的高深问题,也没有影响任务运行,纯粹因为人员粗心导致,记录一下排查的过程。 问题描述 一个生产环境的奇怪问题,环境是flink1.15.0 on yarn…

Apache Airflow (十) :SSHOperator及调度远程Shell脚本

🏡 个人主页:IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 🚩 私聊博主:加入大数据技术讨论群聊,获取更多大数据资料。 🔔 博主个人B栈地址:豹哥教你大数据的个人空间-豹…

【C++】【Opencv】cv::GaussianBlur、cv::filter2D()函数详解和示例

本文通过函数详解和运行示例对cv::GaussianBlur和cv::filter2D()两个函数进行解读,最后综合了两个函数的关系和区别,以帮助大家理解和使用。 目录 cv::GaussianBlur()函数详解运行示例 filter2D()函数详解运行示例 总结两个函数联…

github 私人仓库clone的问题

github 私人仓库clone的问题 公共仓库直接克隆就可以,私人仓库需要权限验证,要先申请token 1、登录到github,点击setting 打开的页面最底下,有一个developer setting 这里申请到token之后,注意要保存起来&#xff…

ke11..--2其他界面也要提取我的locatStarage

获取浏览器里面的本地缓存 localStorage就是我们的浏览器缓存在哪都可以用 下面代码是获取打印到我们的页面上 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title> </head> …

计算机网络八股文

计算机网络八股文 第一章 计算机网络基础 1.1 OSI 七层参考模型及各自功能 七层参考模式是一个抽象的模型体&#xff0c;不仅包括一系列抽象的术语或概念&#xff0c;也包括具体的协议。 &#xff08;物、数、网、传、会、表、应&#xff09; 物理层&#xff1a;主要定义物…

PyCharm 【unsupported Python 3.1】

PyCharm2020.1版本&#xff0c;当添加虚拟环境发生异常&#xff1a; 原因&#xff1a;Pycharm版本低了&#xff01;不支持配置的虚拟环境版本 解决&#xff1a;下载PyCharm2021.1版本&#xff0c;进行配置成功&#xff01;

nginx学习(2)

Nginx 反向代理案例2 1. 实现效果 实现效果&#xff1a;使用 nginx 反向代理&#xff0c;根据访问的路径跳转到不同端口的服务中 nginx 监听端口为 8001&#xff0c; 访问 http://127.0.0.1:8001/edu/ 直接跳转到 127.0.0.1:8081 访问 http://127.0.0.1:8001/vod/ 直接跳转到 …

【开源】基于JAVA的大学兼职教师管理系统

项目编号&#xff1a; S 004 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S004&#xff0c;文末获取源码。} 项目编号&#xff1a;S004&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容三、界面展示3.1 登录注册3.2 学生教师管…

MATLAB 机械臂逆运动学进行轨迹控制建模

系列文章目录 文章目录 系列文章目录前言一、模型概览1.1 Target Pose Generation 目标姿势生成1.2 Inverse Kinematics 逆运动学1.3 Manipulator Dynamics 机械手动力学1.4 Pose Measurement 姿势测量 二、机械手定义三、生成航点四、模型设置五、模拟机械手运动六、将结果可视…

OpenCV快速入门:初探

文章目录 一、什么是OpenCV二、安装OpenCV三、图像读取与显示读取图像显示图像等待按键与关闭窗口 四、视频加载与摄像头调用从视频文件中读取从摄像头中读取关闭窗口与释放资源 五、图像的基本存储方式RGB矩阵矩阵操作与像素访问使用矩阵来显示图像 六、图像保存读取图像保存图…

java接收前端easyui datagrid传递的数组参数

这篇文章分享一下怎么在easyui的datagrid刷新表格时&#xff0c;在后端java代码中接收datagrid传递的数组参数。 数组来源于技能的tagbox&#xff08;标签框&#xff09;&#xff0c;tagbox和combobox的区别是tagbox可以选择多项。 标签框渲染的代码为 $("#skill_ids"…

wpf devexpress Property Gird管理集合属性

Property Grid允许你添加&#xff0c;浏览和编辑集合属性

golang标准库-crc32的使用

1.概述 crc32实现了32位循环冗余检测算法的实现。目前crc32内部提供 了三种常用的多项式,采用查表法来提高计算checksum的效率。通过crc32.MakeTable()可以获取对应的表&#xff0c;crc32提供了一个IEETABLE可以直接使用&#xff0c;官方链接如下&#xff1a;crc32 package - h…

Windows Server2012 R2修复SSL/TLS漏洞(CVE-2016-2183)

漏洞描述 CVE-2016-2183 是一个TLS加密套件缺陷&#xff0c;存在于OpenSSL库中。该缺陷在于使用了弱随机数生成器&#xff0c;攻击者可以利用此缺陷预测随机数的值&#xff0c;从而成功绕过SSL/TLS连接的加密措施&#xff0c;实现中间人攻击。这个漏洞影响了OpenSSL 1.0.2版本…

免费开源的区域屏幕录制(gif转换)工具(支持编辑功能)

软件优点&#xff1a;区域截屏&#xff0c;直接转换为gif即刻分享&#xff0c;免费开源&#xff0c;支持编辑功能 它可以让你轻松地录制屏幕&#xff0c;摄像头或画板的动画&#xff0c;并编辑、保存为 GIF&#xff0c;视频或其他格式。 下载并安装 ScreenToGif 首先&#xf…

CentOS中安装常用环境

一、CentOS安装 redis ①&#xff1a;更新yum sudo yum update②&#xff1a;安装 EPEL 存储库 Redis 通常位于 EPEL 存储库中。运行以下命令安装 EPEL 存储库 sudo yum install epel-release③&#xff1a;安装 Redis sudo yum install redis④&#xff1a;启动 Redis 服…

加密数字货币:机遇与风险并存

随着区块链技术的发展和普及&#xff0c;加密数字货币逐渐走入人们的视线。作为一种以数字形式存在的资产&#xff0c;加密数字货币具有去中心化、匿名性和安全性高等特点&#xff0c;为人们提供了一种全新的支付方式和投资选择。然而&#xff0c;加密数字货币市场也存在着较高…

编译智能合约以及前端交互工具库(Web3项目一实战之三)

我们已然在上一篇 Web3项目灵魂所在之智能合约编写(Web3项目一实战之二) ,为项目写好了智能合约代码。 但身为开发人员的我们,深知高级编程语言所编写出来的代码,都是需要经过编译,而后外部方能正常调用。很显然,使用solidity这门新的高级编程语言编写出来的智能合约,也…