36、Flink 的 Formats 之Parquet 和 Orc Format

Flink 系列文章

1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接

13、Flink 的table api与sql的基本概念、通用api介绍及入门示例
14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性
15、Flink 的table api与sql之流式概念-详解的介绍了动态表、时间属性配置(如何处理更新结果)、时态表、流上的join、流上的确定性以及查询配置
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及FileSystem示例(1)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Elasticsearch示例(2)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Apache Kafka示例(3)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及JDBC示例(4)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Apache Hive示例(6)
17、Flink 之Table API: Table API 支持的操作(1)
17、Flink 之Table API: Table API 支持的操作(2)
18、Flink的SQL 支持的操作和语法
19、Flink 的Table API 和 SQL 中的内置函数及示例(1)
19、Flink 的Table API 和 SQL 中的自定义函数及示例(2)
19、Flink 的Table API 和 SQL 中的自定义函数及示例(3)
19、Flink 的Table API 和 SQL 中的自定义函数及示例(4)
20、Flink SQL之SQL Client: 不用编写代码就可以尝试 Flink SQL,可以直接提交 SQL 任务到集群上
21、Flink 的table API与DataStream API 集成(1)- 介绍及入门示例、集成说明
21、Flink 的table API与DataStream API 集成(2)- 批处理模式和inser-only流处理
21、Flink 的table API与DataStream API 集成(3)- changelog流处理、管道示例、类型转换和老版本转换示例
21、Flink 的table API与DataStream API 集成(完整版)
22、Flink 的table api与sql之创建表的DDL
24、Flink 的table api与sql之Catalogs(介绍、类型、java api和sql实现ddl、java api和sql操作catalog)-1
24、Flink 的table api与sql之Catalogs(java api操作数据库、表)-2
24、Flink 的table api与sql之Catalogs(java api操作视图)-3
24、Flink 的table api与sql之Catalogs(java api操作分区与函数)-4
25、Flink 的table api与sql之函数(自定义函数示例)
26、Flink 的SQL之概览与入门示例
27、Flink 的SQL之SELECT (select、where、distinct、order by、limit、集合操作和去重)介绍及详细示例(1)
27、Flink 的SQL之SELECT (SQL Hints 和 Joins)介绍及详细示例(2)
27、Flink 的SQL之SELECT (窗口函数)介绍及详细示例(3)
27、Flink 的SQL之SELECT (窗口聚合)介绍及详细示例(4)
27、Flink 的SQL之SELECT (Group Aggregation分组聚合、Over Aggregation Over聚合 和 Window Join 窗口关联)介绍及详细示例(5)
27、Flink 的SQL之SELECT (Top-N、Window Top-N 窗口 Top-N 和 Window Deduplication 窗口去重)介绍及详细示例(6)
27、Flink 的SQL之SELECT (Pattern Recognition 模式检测)介绍及详细示例(7)
28、Flink 的SQL之DROP 、ALTER 、INSERT 、ANALYZE 语句
29、Flink SQL之DESCRIBE、EXPLAIN、USE、SHOW、LOAD、UNLOAD、SET、RESET、JAR、JOB Statements、UPDATE、DELETE(1)
29、Flink SQL之DESCRIBE、EXPLAIN、USE、SHOW、LOAD、UNLOAD、SET、RESET、JAR、JOB Statements、UPDATE、DELETE(2)
30、Flink SQL之SQL 客户端(通过kafka和filesystem的例子介绍了配置文件使用-表、视图等)
32、Flink table api和SQL 之用户自定义 Sources & Sinks实现及详细示例
33、Flink 的Table API 和 SQL 中的时区
35、Flink 的 Formats 之CSV 和 JSON Format
36、Flink 的 Formats 之Parquet 和 Orc Format
41、Flink之Hive 方言介绍及详细示例
42、Flink 的table api与sql之Hive Catalog
43、Flink之Hive 读写及详细验证示例
44、Flink之module模块介绍及使用示例和Flink SQL使用hive内置函数及自定义函数详细示例–网上有些说法好像是错误的


文章目录

  • Flink 系列文章
  • 一、Orc Format
    • 1、maven 依赖
    • 2、Flink sql client 建表示例
      • 1)、增加ORC文件解析的类库
      • 2)、生成ORC文件
      • 3)、建表
      • 4)、验证
    • 3、table api建表示例
      • 1)、源码
      • 2)、运行结果
      • 3)、maven依赖
    • 4、Format 参数
    • 5、数据类型映射
  • 二、Parquet Format
    • 1、maven 依赖
    • 2、Flink sql client 建表示例
      • 1)、增加parquet文件解析类库
      • 2)、生成parquet文件
      • 3)、建表
      • 4)、验证
    • 3、table api建表示例
      • 1)、源码
      • 2)、运行结果
      • 3)、maven依赖
    • 4、Format 参数
    • 5、数据类型映射


本文介绍了Flink 支持的数据格式中的ORC和Parquet,并分别以sql和table api作为示例进行了说明。
本文依赖flink、kafka、hadoop(3.1.4版本)集群能正常使用。
本文分为2个部分,即ORC和Parquet Format。
本文的示例是在Flink 1.17版本(flink 集群和maven均是Flink 1.17)中运行。

一、Orc Format

Apache Orc Format 允许读写 ORC 数据。

1、maven 依赖

<dependency><groupId>org.apache.flink</groupId><artifactId>flink-orc</artifactId><version>1.17.1</version>
</dependency>

下面的依赖视情况而定,有些可能会出现guava的冲突,如果出现冲突可能需要把下面的maven依赖。

    	<dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>32.0.1-jre</version></dependency> 

2、Flink sql client 建表示例

下面是一个用 Filesystem connector 和 Orc format 创建表格的例子

1)、增加ORC文件解析的类库

需要将flink-sql-orc-1.17.1.jar 放在 flink的lib目录下,并重启flink服务。
该文件可以在链接中下载。

2)、生成ORC文件

该步骤需要借助于原hadoop生成的文件,可以参考文章:21、MapReduce读写SequenceFile、MapFile、ORCFile和ParquetFile文件
测试数据文件可以自己准备,不再赘述。
特别需要说明的是ORC文件的SCHEMA 需要和建表的字段名称和类型保持一致。

struct<id:string,type:string,orderID:string,bankCard:string,ctime:string,utime:string>

源码

import java.io.IOException;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.orc.OrcConf;
import org.apache.orc.TypeDescription;
import org.apache.orc.mapred.OrcStruct;
import org.apache.orc.mapreduce.OrcOutputFormat;/*** @author alanchan* 读取普通文本文件转换为ORC文件*/
public class WriteOrcFile extends Configured implements Tool {static String in = "D:/workspace/bigdata-component/hadoop/test/in/orc";static String out = "D:/workspace/bigdata-component/hadoop/test/out/orc";public static void main(String[] args) throws Exception {Configuration conf = new Configuration();int status = ToolRunner.run(conf, new WriteOrcFile(), args);System.exit(status);}@Overridepublic int run(String[] args) throws Exception {// 设置SchemaOrcConf.MAPRED_OUTPUT_SCHEMA.setString(this.getConf(), SCHEMA);Job job = Job.getInstance(getConf(), this.getClass().getName());job.setJarByClass(this.getClass());job.setMapperClass(WriteOrcFileMapper.class);job.setMapOutputKeyClass(NullWritable.class);job.setMapOutputValueClass(OrcStruct.class);job.setNumReduceTasks(0);// 配置作业的输入数据路径FileInputFormat.addInputPath(job, new Path(in));// 设置作业的输出为MapFileOutputFormatjob.setOutputFormatClass(OrcOutputFormat.class);Path outputDir = new Path(out);outputDir.getFileSystem(this.getConf()).delete(outputDir, true);FileOutputFormat.setOutputPath(job, outputDir);return job.waitForCompletion(true) ? 0 : 1;}// 定义数据的字段信息
//数据格式	
//	id                                  ,type    ,orderID                               ,bankCard,ctime              ,utime
//	2.0191130220014E+27,ALIPAY,191130-461197476510745,356886,,
//	2.01911302200141E+27,ALIPAY,191130-570038354832903,404118,2019/11/30 21:44,2019/12/16 14:24
//	2.01911302200143E+27,ALIPAY,191130-581296620431058,520083,2019/11/30 18:17,2019/12/4 20:26
//	2.0191201220014E+27,ALIPAY,191201-311567320052455,622688,2019/12/1 10:56,2019/12/16 11:54private static final String SCHEMA = "struct<id:string,type:string,orderID:string,bankCard:string,ctime:string,utime:string>";static class WriteOrcFileMapper extends Mapper<LongWritable, Text, NullWritable, OrcStruct> {// 获取字段描述信息private TypeDescription schema = TypeDescription.fromString(SCHEMA);// 构建输出的Keyprivate final NullWritable outputKey = NullWritable.get();// 构建输出的Value为ORCStruct类型private final OrcStruct outputValue = (OrcStruct) OrcStruct.createValue(schema);protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {// 将读取到的每一行数据进行分割,得到所有字段String[] fields = value.toString().split(",", 6);// 将所有字段赋值给Value中的列outputValue.setFieldValue(0, new Text(fields[0]));outputValue.setFieldValue(1, new Text(fields[1]));outputValue.setFieldValue(2, new Text(fields[2]));outputValue.setFieldValue(3, new Text(fields[3]));outputValue.setFieldValue(4, new Text(fields[4]));outputValue.setFieldValue(5, new Text(fields[5]));context.write(outputKey, outputValue);}}}

将生成的文件上传至hdfs://server1:8020/flinktest/orctest/下。

至此,准备环境与数据已经完成。

3)、建表

需要注意的是字段的名称与类型,需要和orc文件的schema保持一致,否则读取不到文件内容。

CREATE TABLE alan_orc_order (id STRING,type STRING,orderID STRING,bankCard STRING,ctime STRING,utime STRING
) WITH ('connector' = 'filesystem','path' = 'hdfs://server1:8020/flinktest/orctest/','format' = 'orc'
);Flink SQL> CREATE TABLE alan_orc_order (
>   id STRING,
>   type STRING,
>   orderID STRING,
>   bankCard STRING,
>   ctime STRING,
>   utime STRING
> ) WITH (
>  'connector' = 'filesystem',
>  'path' = 'hdfs://server1:8020/flinktest/orctest/',
>  'format' = 'orc'
> );
[INFO] Execute statement succeed.

4)、验证

Flink SQL> select * from alan_orc_order limit 10;
+----+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
| op |                             id |                           type |                        orderID |                       bankCard |                          ctime |                          utime |
+----+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
| +I |            2.0191130220014E+27 |                         ALIPAY |         191130-461197476510745 |                         356886 |                                |                                |
| +I |           2.01911302200141E+27 |                         ALIPAY |         191130-570038354832903 |                         404118 |               2019/11/30 21:44 |               2019/12/16 14:24 |
| +I |           2.01911302200143E+27 |                         ALIPAY |         191130-581296620431058 |                         520083 |               2019/11/30 18:17 |                2019/12/4 20:26 |
| +I |            2.0191201220014E+27 |                         ALIPAY |         191201-311567320052455 |                         622688 |                2019/12/1 10:56 |               2019/12/16 11:54 |
| +I |                    2.01912E+27 |                         ALIPAY |         191201-216073503850515 |                         456418 |               2019/12/11 22:39 |                                |
| +I |                    2.01912E+27 |                         ALIPAY |         191201-072274576332921 |                         433668 |                                |                                |
| +I |                    2.01912E+27 |                         ALIPAY |         191201-088486052970134 |                         622538 |                2019/12/2 23:12 |                                |
| +I |                    2.01912E+27 |                         ALIPAY |         191201-492457166050685 |                         622517 |                 2019/12/1 0:42 |               2019/12/14 13:27 |
| +I |                    2.01912E+27 |                         ALIPAY |         191201-037136794432586 |                         622525 |                                |                                |
| +I |                    2.01912E+27 |                         ALIPAY |         191201-389779784790672 |                         486494 |                2019/12/1 22:25 |               2019/12/16 23:32 |
+----+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
Received a total of 10 rows

3、table api建表示例

通过table api建表,参考文章:
17、Flink 之Table API: Table API 支持的操作(1)
17、Flink 之Table API: Table API 支持的操作(2)

为了简单起见,本示例仅仅是通过sql建表,数据准备见上述示例。

1)、源码

下面是在本地运行的,建表的path也是用本地的。

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;/*** @author alanchan**/
public class TestORCFormatDemo {static String sourceSql = "CREATE TABLE alan_orc_order (\r\n" + "  id STRING,\r\n" + "  type STRING,\r\n" + "  orderID STRING,\r\n" + "  bankCard STRING,\r\n" + "  ctime STRING,\r\n" + "  utime STRING\r\n" + ") WITH (\r\n" + " 'connector' = 'filesystem',\r\n" + " 'path' = 'D:/workspace/bigdata-component/hadoop/test/out/orc',\r\n" + " 'format' = 'orc'\r\n" + ")";public static void test1() throws Exception {// 1、创建运行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv = StreamTableEnvironment.create(env);// 建表tenv.executeSql(sourceSql);Table table = tenv.from("alan_orc_order"); table.printSchema();tenv.createTemporaryView("alan_orc_order_v", table);tenv.executeSql("select * from alan_orc_order_v limit 10").print();;
//		table.execute().print();env.execute();}public static void main(String[] args) throws Exception {test1();}}

2)、运行结果

(`id` STRING,`type` STRING,`orderid` STRING,`bankcard` STRING,`ctime` STRING,`utime` STRING
)+----+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
| op |                             id |                           type |                        orderID |                       bankCard |                          ctime |                          utime |
+----+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
| +I |            2.0191130220014E+27 |                         ALIPAY |         191130-461197476510745 |                         356886 |                                |                                |
| +I |           2.01911302200141E+27 |                         ALIPAY |         191130-570038354832903 |                         404118 |               2019/11/30 21:44 |               2019/12/16 14:24 |
| +I |           2.01911302200143E+27 |                         ALIPAY |         191130-581296620431058 |                         520083 |               2019/11/30 18:17 |                2019/12/4 20:26 |
| +I |            2.0191201220014E+27 |                         ALIPAY |         191201-311567320052455 |                         622688 |                2019/12/1 10:56 |               2019/12/16 11:54 |
| +I |                    2.01912E+27 |                         ALIPAY |         191201-216073503850515 |                         456418 |               2019/12/11 22:39 |                                |
| +I |                    2.01912E+27 |                         ALIPAY |         191201-072274576332921 |                         433668 |                                |                                |
| +I |                    2.01912E+27 |                         ALIPAY |         191201-088486052970134 |                         622538 |                2019/12/2 23:12 |                                |
| +I |                    2.01912E+27 |                         ALIPAY |         191201-492457166050685 |                         622517 |                 2019/12/1 0:42 |               2019/12/14 13:27 |
| +I |                    2.01912E+27 |                         ALIPAY |         191201-037136794432586 |                         622525 |                                |                                |
| +I |                    2.01912E+27 |                         ALIPAY |         191201-389779784790672 |                         486494 |                2019/12/1 22:25 |               2019/12/16 23:32 |
+----+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
10 rows in set

3)、maven依赖

	<properties><encoding>UTF-8</encoding><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><maven.compiler.source>1.8</maven.compiler.source><maven.compiler.target>1.8</maven.compiler.target><java.version>1.8</java.version><scala.version>2.12</scala.version><flink.version>1.17.0</flink.version></properties><dependencies><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-common</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-bridge</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-sql-gateway --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-sql-gateway</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-csv</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-json</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-planner --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-planner_2.12</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-api-java-uber --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-uber</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-runtime --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-runtime</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-jdbc</artifactId><version>3.1.0-1.17</version></dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.38</version></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-hive --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-hive_2.12</artifactId><version>1.17.0</version></dependency><dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>32.0.1-jre</version></dependency> <!-- flink连接器 --><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka</artifactId><version>${flink.version}</version></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kafka --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-sql-connector-kafka</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.commons/commons-compress --><dependency><groupId>org.apache.commons</groupId><artifactId>commons-compress</artifactId><version>1.24.0</version></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.2</version><!-- <scope>provided</scope> --></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-orc</artifactId><version>1.17.1</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>3.1.4</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.1.4</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-hdfs</artifactId><version>3.1.4</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-parquet</artifactId><version>1.17.1</version></dependency></dependencies>

4、Format 参数

在这里插入图片描述

Orc 格式也支持来源于 Table properties 的表属性。
举个例子,你可以设置 orc.compress=SNAPPY 来允许spappy压缩。

5、数据类型映射

Orc 格式类型的映射和 Apache Hive 是兼容的。

下面的表格列出了 Flink 类型的数据和 Orc 类型的数据的映射关系。
在这里插入图片描述

二、Parquet Format

Apache Parquet 格式允许读写 Parquet 数据.

1、maven 依赖

<dependency><groupId>org.apache.flink</groupId><artifactId>flink-parquet</artifactId><version>1.17.1</version>
</dependency>

2、Flink sql client 建表示例

以下为用 Filesystem 连接器和 Parquet 格式创建表的示例

1)、增加parquet文件解析类库

需要将flink-sql-parquet-1.17.1.jar 放在 flink的lib目录下,并重启flink服务。
该文件可以在链接中下载。

2)、生成parquet文件

该步骤需要借助于原hadoop生成的文件,可以参考文章:21、MapReduce读写SequenceFile、MapFile、ORCFile和ParquetFile文件
测试数据文件可以自己准备,不再赘述。

import java.io.IOException;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.parquet.example.data.Group;
import org.apache.parquet.example.data.simple.SimpleGroupFactory;
import org.apache.parquet.hadoop.ParquetOutputFormat;
import org.apache.parquet.hadoop.example.GroupWriteSupport;
import org.apache.parquet.hadoop.metadata.CompressionCodecName;
import org.apache.parquet.schema.MessageType;
import org.apache.parquet.schema.OriginalType;
import org.apache.parquet.schema.PrimitiveType.PrimitiveTypeName;
import org.apache.parquet.schema.Types;
import org.springframework.util.StopWatch;/*** @author alanchan**/
public class WriteParquetFile extends Configured implements Tool {static String in = "D:/workspace/bigdata-component/hadoop/test/in/parquet";static String out = "D:/workspace/bigdata-component/hadoop/test/out/parquet";public static void main(String[] args) throws Exception {StopWatch clock = new StopWatch();clock.start(WriteParquetFile.class.getSimpleName());Configuration conf = new Configuration();int status = ToolRunner.run(conf, new WriteParquetFile(), args);System.exit(status);clock.stop();System.out.println(clock.prettyPrint());}@Overridepublic int run(String[] args) throws Exception {Configuration conf = getConf();// 此demo 输入数据为2列 city ip//输入文件格式:https://www.win.com/233434,8283140//							https://www.win.com/242288,8283139MessageType schema = Types.buildMessage().required(PrimitiveTypeName.BINARY).as(OriginalType.UTF8).named("city").required(PrimitiveTypeName.BINARY).as(OriginalType.UTF8).named("ip").named("pair");System.out.println("[schema]==" + schema.toString());GroupWriteSupport.setSchema(schema, conf);Job job = Job.getInstance(conf, this.getClass().getName());job.setJarByClass(this.getClass());job.setMapperClass(WriteParquetFileMapper.class);job.setInputFormatClass(TextInputFormat.class);job.setMapOutputKeyClass(NullWritable.class);// 设置value是parquet的Groupjob.setMapOutputValueClass(Group.class);FileInputFormat.setInputPaths(job, in);// parquet输出job.setOutputFormatClass(ParquetOutputFormat.class);ParquetOutputFormat.setWriteSupportClass(job, GroupWriteSupport.class);Path outputDir = new Path(out);outputDir.getFileSystem(this.getConf()).delete(outputDir, true);FileOutputFormat.setOutputPath(job, new Path(out));ParquetOutputFormat.setOutputPath(job, new Path(out));
//		ParquetOutputFormat.setCompression(job, CompressionCodecName.SNAPPY);job.setNumReduceTasks(0);return job.waitForCompletion(true) ? 0 : 1;}public static class WriteParquetFileMapper extends Mapper<LongWritable, Text, NullWritable, Group> {SimpleGroupFactory factory = null;protected void setup(Context context) throws IOException, InterruptedException {factory = new SimpleGroupFactory(GroupWriteSupport.getSchema(context.getConfiguration()));};public void map(LongWritable _key, Text ivalue, Context context) throws IOException, InterruptedException {Group pair = factory.newGroup();//截取输入文件的一行,且是以逗号进行分割String[] strs = ivalue.toString().split(",");pair.append("city", strs[0]);pair.append("ip", strs[1]);context.write(null, pair);}}
}

将生成的文件上传至hdfs://server1:8020/flinktest/parquettest/下。

3)、建表

需要注意的是字段的名称与类型,需要和parquet文件的schema保持一致,否则读取不到文件内容。

  • schema
MessageType schema = Types.buildMessage()
.required(PrimitiveTypeName.BINARY).as(OriginalType.UTF8).named("city")
.required(PrimitiveTypeName.BINARY).as(OriginalType.UTF8).named("ip")
.named("pair");// 以下是schema的内容
[schema]==message pair {required binary city (UTF8);required binary ip (UTF8);
}
  • 建表
CREATE TABLE alan_parquet_cityinfo (city STRING,ip STRING
) WITH ('connector' = 'filesystem','path' = 'hdfs://server1:8020/flinktest/parquettest/','format' = 'parquet'
);Flink SQL> CREATE TABLE alan_parquet_cityinfo (
>   city STRING,
>   ip STRING
> ) WITH (
>  'connector' = 'filesystem',
>  'path' = 'hdfs://server1:8020/flinktest/parquettest/',
>  'format' = 'parquet'
> );
[INFO] Execute statement succeed.

4)、验证

Flink SQL> select * from alan_parquet_cityinfo limit 10;
+----+--------------------------------+--------------------------------+
| op |                           city |                             ip |
+----+--------------------------------+--------------------------------+
| +I |     https://www.win.com/237516 |                        8284068 |
| +I |     https://www.win.com/242247 |                        8284067 |
| +I |     https://www.win.com/243248 |                        8284066 |
| +I |     https://www.win.com/243288 |                        8284065 |
| +I |     https://www.win.com/240213 |                        8284064 |
| +I |     https://www.win.com/239907 |                        8284063 |
| +I |     https://www.win.com/235270 |                        8284062 |
| +I |     https://www.win.com/234366 |                        8284061 |
| +I |     https://www.win.com/229297 |                        8284060 |
| +I |     https://www.win.com/237757 |                        8284059 |
+----+--------------------------------+--------------------------------+
Received a total of 10 rows

3、table api建表示例

通过table api建表,参考文章:
17、Flink 之Table API: Table API 支持的操作(1)
17、Flink 之Table API: Table API 支持的操作(2)
为了简单起见,本示例仅仅是通过sql建表,数据准备见上述示例。

1)、源码

下面是在本地运行的,建表的path也是用本地的。

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;/*** @author alanchan**/
public class TestParquetFormatDemo {static String sourceSql = "CREATE TABLE alan_parquet_cityinfo (\r\n" + "  city STRING,\r\n" + "  ip STRING\r\n" + ") WITH (\r\n" + " 'connector' = 'filesystem',\r\n" + " 'path' = 'D:/workspace/bigdata-component/hadoop/test/out/parquet',\r\n" + " 'format' = 'parquet'\r\n" + ");";public static void test1() throws Exception {// 1、创建运行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv = StreamTableEnvironment.create(env);// 建表tenv.executeSql(sourceSql);Table table = tenv.from("alan_parquet_cityinfo");table.printSchema();tenv.createTemporaryView("alan_parquet_cityinfo_v", table);tenv.executeSql("select * from alan_parquet_cityinfo_v limit 10").print();//		table.execute().print();env.execute();}public static void main(String[] args) throws Exception {test1();}}

2)、运行结果

(`city` STRING,`ip` STRING
)+----+--------------------------------+--------------------------------+
| op |                           city |                             ip |
+----+--------------------------------+--------------------------------+
| +I |     https://www.win.com/237516 |                        8284068 |
| +I |     https://www.win.com/242247 |                        8284067 |
| +I |     https://www.win.com/243248 |                        8284066 |
| +I |     https://www.win.com/243288 |                        8284065 |
| +I |     https://www.win.com/240213 |                        8284064 |
| +I |     https://www.win.com/239907 |                        8284063 |
| +I |     https://www.win.com/235270 |                        8284062 |
| +I |     https://www.win.com/234366 |                        8284061 |
| +I |     https://www.win.com/229297 |                        8284060 |
| +I |     https://www.win.com/237757 |                        8284059 |
+----+--------------------------------+--------------------------------+
10 rows in set

3)、maven依赖

	<properties><encoding>UTF-8</encoding><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><maven.compiler.source>1.8</maven.compiler.source><maven.compiler.target>1.8</maven.compiler.target><java.version>1.8</java.version><scala.version>2.12</scala.version><flink.version>1.17.0</flink.version></properties><dependencies><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-common</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-bridge</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-sql-gateway --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-sql-gateway</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-csv</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-json</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-planner --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-planner_2.12</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-api-java-uber --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-uber</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-runtime --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-runtime</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-jdbc</artifactId><version>3.1.0-1.17</version></dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.38</version></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-hive --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-hive_2.12</artifactId><version>1.17.0</version></dependency><dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>32.0.1-jre</version></dependency> <!-- flink连接器 --><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka</artifactId><version>${flink.version}</version></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kafka --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-sql-connector-kafka</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.commons/commons-compress --><dependency><groupId>org.apache.commons</groupId><artifactId>commons-compress</artifactId><version>1.24.0</version></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.2</version><!-- <scope>provided</scope> --></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-orc</artifactId><version>1.17.1</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>3.1.4</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.1.4</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-hdfs</artifactId><version>3.1.4</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-parquet</artifactId><version>1.17.1</version></dependency></dependencies>

4、Format 参数

在这里插入图片描述
Parquet 格式也支持 ParquetOutputFormat 的配置。
例如, 可以配置 parquet.compression=GZIP 来开启 gzip 压缩。

5、数据类型映射

截至Flink 1.17 版本 ,Parquet 格式类型映射与 Apache Hive 兼容,但与 Apache Spark 有所不同:

  • Timestamp:不论精度,映射 timestamp 类型至 int96。
  • Decimal:根据精度,映射 decimal 类型至固定长度字节的数组。

下表列举了 Flink 中的数据类型与 JSON 中的数据类型的映射关系。
在这里插入图片描述
以上,介绍了Flink 支持的数据格式中的ORC和Parquet,并分别以sql和table api作为示例进行了说明。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/146241.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

人生阶段总结

--回顾一下我迷茫、努力、不开心又失败的阶段人生自我介绍一下&#xff0c;我是一个智力平平&#xff0c;记忆力差&#xff0c;适合自学的长睡眠者。 大专之前 国内的应试教育基本上不适合我&#xff0c;厌恶补课厌恶机械式听课刷题&#xff0c;所有的优势学科都是自学&#xf…

eclipse启动无法找到类(自定义监听器)

一.报错 二.排查 1.首先检查代码是否有问题 本人报错是找不到监听器&#xff0c;故检查监听器的代码和web.xml文件是否有问题 public class DoorListener implements ServletContextListener 监听器是否继承并实现ServletContextListener中的方法。 web.xml中&#xff1a; &…

EMP.DLL是什么东西?怎么解决EMP.DLL文件缺失

在我们使用电脑的过程中&#xff0c;有时会遇到一些特定的错误提示&#xff0c;比如“emp.dll文件缺失”。这样的提示对许多用户来说可能一脸懵逼&#xff0c;不知道怎么处理&#xff0c;那么&#xff0c;究竟什么是emp.dll&#xff1f;它的缺失会产生什么影响&#xff1f;又应…

阿里云CentOS主机开启ipv6

目录 一、云主机开启和使用 ipv6 1、网络和交换机开启 ipv6 2、创建 / 编辑云主机&#xff0c;开启ipv6 3、安全组放行ipv6端口 二、使用 ipv6 地址进行 ssh 连接 三、ipv6 地址绑定域名 一、云主机开启和使用 ipv6 1、网络和交换机开启 ipv6 进入网络、交换机详情页面…

ClickHouse的分片和副本

1.副本 副本的目的主要是保障数据的高可用性&#xff0c;即使一台ClickHouse节点宕机&#xff0c;那么也可以从其他服务器获得相同的数据。 Data Replication | ClickHouse Docs 1.1 副本写入流程 1.2 配置步骤 &#xff08;1&#xff09;启动zookeeper集群 &#xff08;2&…

最新自动定位版本付费进群系统源码

更新内容&#xff1a; 1.在网站首页增加了付款轮播功能。 2.新增了城市定位功能&#xff0c;方便用户查找所在城市的相关信息。 3.对域名库及支付设置进行了更新和优化。 4.增加了一种图模板设置模式&#xff0c;简化了后台模板设置流程。 5.此外还进行了前后台的其他优化…

蓝桥杯第三周算法竞赛D题E题

发现更多计算机知识&#xff0c;欢迎访问Cr不是铬的个人网站 D迷宫逃脱 拿到题目一眼应该就能看出是可以用动态规划来解决。但是怎么定义dp呢? 这个题增加难度的点就在当所在位置与下一个要去的位置互质的时候&#xff0c;会消耗一把钥匙。当没有钥匙的时候就不能移动了。想…

Linux(3):Linux 的文件权限与目录配置

把具有相同的账户放入到一个组里面&#xff0c;这个组就是这两个账户的 群组 。在访问资源&#xff08;操作系统中计算机的资源&#xff09;时&#xff0c;可以让这个组里面的所有用户都具有访问权限。 每个账号都可以有多个群组的支持。 在我们Liux 系统当中&#xff0c;默认的…

<Linux>(极简关键、省时省力)《Linux操作系统原理分析之Linux 进程管理 4》(8)

《Linux操作系统原理分析之Linux 进程管理 4》&#xff08;8&#xff09; 4 Linux 进程管理4.4 Linux 进程的创建和撤销4.4.1 Linux 进程的族亲关系4.4.2 Linux 进程的创建4.4.3 Linux 进程创建的过程4.4.4 Linux 进程的执行4.4.5 Linux 进程的终止和撤销 4 Linux 进程管理 4.…

Redis - 订阅发布替换 Etcd 解决方案

为了减轻项目的中间件臃肿&#xff0c;由于我们项目本身就应用了 Redis&#xff0c;正好 Redis 的也具备订阅发布监听的特性&#xff0c;正好应对 Etcd 的功能&#xff0c;所以本次给大家讲解如何使用 Redis 消息订阅发布来替代 Etcd 的解决方案。接下来&#xff0c;我们先看 R…

vue2项目修改编译巨慢

前言&#xff1a;我们的一个vue项目在给新同事后他说编译贼慢&#xff0c;一个小修改项5分钟才能自动编译成功&#xff0c;我把项目放到新电脑上也巨慢&#xff0c;升级了nodejs好使了一些&#xff0c;但还是慢&#xff0c;最后引入webpack后巨快&#xff0c; 在项目的package…

redis实战篇(2)

优惠卷秒杀 通过本章节&#xff0c;我们可以学会Redis的计数器功能&#xff0c; 结合Lua完成高性能的redis操作&#xff0c;同时学会Redis分布式锁的原理&#xff0c;包括Redis的三种消息队列 3、优惠卷秒杀 3.1 -全局唯一ID 每个店铺都可以发布优惠券&#xff1a; 当用户抢…

linux课程第一课------命令的简单的介绍

作者前言 &#x1f382; ✨✨✨✨✨✨&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f382; ​&#x1f382; 作者介绍&#xff1a; &#x1f382;&#x1f382; &#x1f382; &#x1f389;&#x1f389;&#x1f389…

内网离线安装elasticsearch、kibana

一、软件获取 elastic kibana 二、elastic安装 解压安装即可提前可改下配置文件&#xff0c;不然可能会出现内存分配错误 三、运行elastic 需要调试看信息的话&#xff0c;可在cmd窗口运行bat&#xff0c;就会打印输出信息了。 生产kibana token bin\elasticsearch-create…

交换机如何配置BGP协议

环境&#xff1a; 华为交换机 华三交换机 问题描述&#xff1a; 交换机如何配置BGP协议 解决方案&#xff1a; 华三交换机上配置案例 1.配置BGP协议&#xff0c;可以按照以下步骤进行&#xff1a; 登录交换机&#xff1a;使用SSH、Telnet或控制台等方式登录到华三交换…

简单理解路由重分发(用两路由器来理解)

相关命令&#xff1a; default-information originate //*重分发默认路由 redistribute rip subnets //*重分发rip redistribute ospf 1 metric 3 //*重分发ospf&#xff08;其中&#xff1a;1是ospf进程id 3是跳数&#xff09; redistribute sta…

main.js 中的 render函数

按照之前的单组件文件中的写法&#xff0c;我们的写法应该是这样的 import App from ./App.vuenew Vue({el: #app,templete: <App></App>,components: {App}, }) 1、定义el根节点。2、注册App组件。3、渲染 templete 模板 但是在脚手架工程中&#xff0c;他是这…

Java 之拼图小游戏

声明 此项目为java基础的阶段项目,此项目涉及了基础语法,面向对象等知识,具体像语法基础如判断,循环,数组,字符串,集合等…; 面向对象如封装,继承,多态,抽象类,接口,内部类等等…都有涉及。此项目涉及的内容比较多,作为初学者可以很好的将前面的知识串起来。此项目拿来练手以及…

飞书开发学习笔记(七)-添加机器人及发送webhook消息

飞书开发学习笔记(七)-添加机器人及发送webhook消息 一.添加飞书机器人 1.1 添加飞书机器人过程 在群的右上角点击折叠按键…选择 设置 群机器人中选择 添加机器人 选择自定义机器人&#xff0c;通过webhook发送消息 弹出的信息中有webhook地址&#xff0c;选择复制。 安…

电子学会C/C++编程等级考试2021年09月(一级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:数字判断 输入一个字符,如何输入的字符是数字,输出yes,否则输出no 输入 一个字符 输出 如何输入的字符是数字,输出yes,否则输出no 样例1输入 样例1输入 5样例1输出 yes样例2输入 A 样例2输出 …