AdaBoost 算法:理解、实现和掌握 AdaBoost

一、介绍

        Boosting 是一种集成建模技术,由 Freund 和 Schapire 于 1997 年首次提出。从那时起,Boosting 就成为解决二元分类问题的流行技术。这些算法通过将大量弱学习器转换为强学习器来提高预测能力 。

        Boosting 算法背后的原理是,我们首先在训练数据集上构建一个模型,然后构建第二个模型来纠正第一个模型中存在的错误。继续此过程,直到且除非错误被最小化并且数据集被正确预测。Boosting 算法以类似的方式工作,它结合多个模型(弱学习器)来达到最终输出(强学习器)。

        学习目标

  • 了解 AdaBoost 算法是什么及其工作原理。
  • 了解什么是树桩。
  • 了解增强算法如何帮助提高 ML 模型的准确性。

本文作为数据科学博客马拉松的一部分发表 

        目录

  • 介绍
  • 什么是 AdaBoost 算法?
  • 了解 AdaBoost 算法的工作原理
    • 第 1 步:分配权重
    • 第 2 步:对样本进行分类
    • 步骤 3:计算影响力
    • 第 4 步:计算 TE 和性能
    • 第 5 步:减少错误
    • 第 6 步:新数据集
    • 第 7 步:重复前面的步骤
  • 结论
  • 经常问的问题

        二、什么是 AdaBoost 算法?

有许多机器学习算法可供选择用于您的问题陈述。其中一种用于预测建模的算法称为 AdaBoost。

AdaBoost 算法是 Adaptive Boosting 的缩写,是 一种在机器学习中用作集成方法的 Boosting 技术。它被称为自适应提升,因为权重被重新分配给每个实例,更高的权重分配给错误分类的实例。

该算法的作用是构建一个模型并为所有数据点赋予相同的权重。然后,它为错误分类的点分配更高的权重。现在,所有权重较高的点在下一个模型中都会变得更加重要。它将继续训练模型,直到收到较低的错误为止。

        让我们举个例子来理解这一点,假设您在泰坦尼克号数据集上构建了一个决策树算法,并且从那里您获得了 80% 的准确率。之后,您应用不同的算法并检查准确性,结果显示 KNN 为 75%,线性回归为 70%。

        当我们在同一数据集上构建不同的模型时,我们发现准确性有所不同。但是如果我们使用所有这些算法的组合来做出最终预测呢?通过取这些模型结果的平均值,我们将获得更准确的结果。我们可以通过这种方式来提高预测能力。

        如果您想直观地理解这一点,我强烈建议您阅读这篇文章。

        这里我们将更加关注数学直觉。

        还有另一种集成学习算法称为梯度提升算法。在此算法中,我们尝试减少误差而不是权重,如 AdaBoost 中那样。但在本文中,我们将仅关注 AdaBoost 的数学直觉。

三、了解 AdaBoost 算法的工作原理

让我们通过以下教程了解该算法的原理和工作原理。

第 1 步:分配权重

下面显示的图像是我们数据集的实际表示。由于目标列是二元的,因此这是一个分类问题。首先,这些数据点将被分配一些权重。最初,所有权重都是相等的。

样本权重的计算公式为:

其中 N 是数据点的总数

这里由于我们有 5 个数据点,因此分配的样本权重将为 1/5。

第 2 步:对样本进行分类

我们首先查看“性别”对样本进行分类的效果如何,然后查看变量(年龄、收入)如何对样本进行分类。

我们将为每个特征创建一个决策树桩,然后计算每棵树的基尼指数。基尼指数最低的树将是我们的第一个树桩。

在我们的数据集中,假设性别具有最低的基尼指数,因此它将是我们的第一个树桩。

第 3 步:计算影响力

现在,我们将使用以下公式计算该分类器在对数据点进行分类时的“发言量”“重要性”“影响力” :

 

总误差只不过是错误分类的数据点的所有样本权重的总和。

在我们的数据集中,我们假设有 1 个错误的输出,因此我们的总误差将为 1/5,并且 alpha(树桩的性能)将为:

        

注意:总误差始终在 0 和 1 之间。

0 表示完美的树桩,1 表示糟糕的树桩。

        从上图中,我们可以看到,当没有错误分类时,我们就没有错误(Total Error = 0),因此“a amount of say (alpha)”将是一个很大的数字。

        当分类器预测一半正确一半错误时,则总误差 = 0.5,并且分类器的重要性(可以说)将为 0。

        如果所有样本都被错误分类,那么错误将非常高(大约为 1),因此我们的 alpha 值将是负整数。

        第 4 步:计算 TE 和性能

        您一定想知道为什么需要计算树桩的 TE 和性能。答案很简单,我们需要更新权重,因为如果将相同的权重应用于下一个模型,那么收到的输出将与第一个模型中收到的输出相同。

        错误的预测将被赋予更高的权重,而正确的预测权重将被降低。现在,当我们在更新权重后构建下一个模型时,将更优先考虑权重较高的点。

        在找到分类器的重要性和总误差后,我们最终需要更新权重,为此,我们使用以下公式:

当样本被正确分类时,例如(alpha)的数量将为

当样本被错误分类时,例如(alpha)的量将为正。

有 4 个正确分类的样本,1 个错误分类的样本。这里, 该数据点的样本权重1/5,性别树桩的发言/表现 量是0.69

正确分类样本的新权重为:

对于错误分类的样本,更新后的权重为:

笔记

当我输入值时请查看 alpha 的符号,当数据点正确分类时alpha 为负,这会将样本权重从 0.2 降低到 0.1004。当存在错误分类时为,这会将样本权重从 0.2 增加到 0.3988

        我们知道样本权重的总和必须等于 1,但是这里如果我们将所有新样本权重相加,我们将得到 0.8004。为了使这个总和等于 1,我们将所有权重除以更新权重的总和(即 0.8004)来标准化这些权重。因此,对样本权重进行归一化后,我们得到了这个数据集,现在总和等于 1。

第 5 步:减少错误

现在,我们需要创建一个新的数据集来查看错误是否减少。为此,我们将删除“样本权重”和“新样本权重”列,然后根据“新样本权重”将数据点划分为多个桶。

第 6 步:新数据集

我们快完成了。现在,该算法所做的是从 0-1 中选择随机数。由于错误分类的记录具有较高的样本权重,因此选择这些记录的概率非常高。

假设我们的算法采用的 5 个随机数是 0.38,0.26,0.98,0.40,0.55。

现在我们将看到这些随机数落在桶中的位置,并根据它,我们将制作如下所示的新数据集。

这是我们的新数据集,我们看到错误分类的数据点已被选择 3 次,因为它的权重较高。

第 7 步:重复前面的步骤

现在这作为我们的新数据集,我们需要重复上述所有步骤,即

  1. 为所有数据点 分配相同的权重。
  2. 通过查找基尼指数并选择基尼指数最低的树桩,找到对新样本集合进行分类的最佳树桩
  3. 计算“Amount of Say”“Total error”来更新之前的样本权重。
  4.  标准化新样本权重。

迭代这些步骤,直到达到较低的训练误差。

假设对于我们的数据集,我们按顺序构建了 3 个决策树(DT1、DT2、DT3)  如果我们现在发送测试数据,它将通过所有决策树,最后,我们将看到哪个类占多数,并基于此,我们将对
测试数据集进行预测。

四、结论

如果你理解了本文的每一行,你就终于掌握了这个算法。

我们首先向您介绍什么是 Boosting 以及它的各种类型,以确保您了解 Adaboost 分类器以及 AdaBoost 的准确位置。然后我们应用简单的数学并了解公式的每个部分是如何工作的。

在下一篇文章中,我将解释梯度下降和极限梯度下降算法,它们是一些更重要的增强预测能力的Boosting技术。

如果您想从头开始了解 AdaBoost 机器学习模型初学者的 Python 实现,请访问Analytics vidhya 的完整指南。本文提到了bagging和boosting的区别,以及AdaBoost算法的优缺点。

  • 在本文中,我们了解了 boosting 的工作原理。
  • 我们了解 adaboost 背后的数学原理。
  • 我们了解了如何使用弱学习器作为估计器来提高准确性。

五、常见的问题

Q1. AdaBoost 算法是有监督的还是无监督的?

答:Adaboost 属于机器学习的监督学习分支。这意味着训练数据必须有一个目标变量。使用adaboost学习技术,我们可以解决分类和回归问题。

Q2。AdaBoost算法有哪些优点?

答:需要较少的预处理,因为您不需要缩放自变量。AdaBoost 算法中的每次迭代都使用决策树桩作为单独的模型,因此所需的预处理与决策树相同。AdaBoost 也不太容易出现过度拟合。除了增强弱学习器之外,我们还可以微调这些集成技术中的超参数(例如learning_rate)以获得更好的准确性。

Q3。如何使用 AdaBoost 算法?

答:与随机森林、决策树、逻辑回归和支持向量机分类器非常相似,AdaBoost 也要求训练数据具有目标变量。该目标变量可以是分类变量或连续变量。scikit-learn 库包含 Adaboost 分类器和回归器;因此我们可以使用Python中的sklearn来创建adaboost模型。

本文中显示的关于使用 Bokeh 的交互式仪表板的媒体不属于 Analytics Vidhya 所有,其使用由作者自行决定。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/146107.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

万宾科技智能传感器EN100-C2有什么作用?

在日常生活中井盖是一种常见的城市设施,但井盖出现问题可能会对人们的生活造成什么影响呢?移位或老化的井盖可能会威胁人们的安全,同时也会影响城市生命线的正常运行。然而智能井盖的出现为解决这些问题提供了有效的应对方案。 WITBEE万宾智能…

udp多点通信-广播-组播

单播 每次只有两个实体相互通信,发送端和接收端都是唯一确定的。 广播 主机之间的一对多的通信所有的主机都可以接收到广播消息(不管你是否需要)广播禁止穿过路由器(只能做局域网通信)只有UDP可以广播广播地址 有效网络号全是1的主机号 192.1…

Pikachu(皮卡丘靶场)初识XSS(常见标签事件及payload总结)

目录 1、反射型xss(get) 2、反射性xss(post) 3、存储型xss 4、DOM型xss 5、DOM型xss-x XSS又叫跨站脚本攻击,是HTML代码注入,通过对网页注入浏览器可执行代码,从而实现攻击。 ​ 1、反射型xss(get) Which NBA player do you like? 由…

nvm安装详细教程(卸载旧的nodejs,安装nvm、node、npm、cnpm、yarn及环境变量配置)

文章目录 一、完全卸载旧的nodejs1、打开系统的控制面板,点击卸载程序,卸载nodejs(1)打开系统的控制面板,点击程序下的卸载程序(2)找到node.js,鼠标右击出现下拉框,点卸载…

YOLO改进系列之注意力机制(EffectiveSE模型介绍)

模型结构 ESE(Effective Squeeze and Extraction) layer是CenterMask模型中的一个block,基于SE(Squeeze and Extraction)改进得到。与SE的区别在于,ESE block只有一个fc层,(CenterMask : Real-Time Anchor-Free Insta…

【git】远程远程仓库命令操作详解

这篇文章主要是针对git的命令行操作进行讲解,工具操作的基础也是命令行,如果基本命令操作都不理解,就算是会工具操作,真正遇到问题还是一脸懵逼 如果需要查看本地仓库的详细操作可以看我上篇文件 【git】git本地仓库命令操作详解…

IIC总线概述和通信时序代码详细图文解析

IIC总线 1 IIC总线概述 I2C总线两线制包括:串行数据SDA(Serial Data)、串行时钟SCL(Serial Clock)。总线必须由主机(通常为微控制器)控制,主机产生串行时钟(SCL&#x…

Linux安装DMETL5与卸载

Linux安装DMETL5与卸载 环境介绍1 DM8数据库配置1.1 DM8数据库安装1.2 初始化达梦数据库1.3 创建DMETL使用的数据库用户 2 配置DMETL52.1 解压DMETL5安装包2.2 安装调度器2.3 安装执行器2.4 安装管理器2.5 启动dmetl5 调度器2.6 启动dmetl5 执行器2.7 启动dmetl5 管理器2.8 查看…

跨境电商与文化多样性:市场中的机遇

在数字时代,跨境电商已经成为全球贸易的主要驱动力之一。随着互联网的普及和物流的改善,企业有机会将产品和服务推向全球市场。 然而,随着全球市场的扩大,文化多样性也成为了一个重要的考虑因素。本文将深入探讨跨境电商与文化多…

【408】计算机学科专业基础 - 操作系统

一、计算机系统概述 1.简介 什么是操作系统? 操作系统(Operating Ststem, OS)是指控制和管理整个计算机系统的硬件和软件资源,并合理地组织调度计算机的工作和资源的分配,以提供给用户和其他软件方便的接口…

成功解决:文档根元素 “mapper“ 必须匹配 DOCTYPE 根 “null“

文章底部有个人公众号:热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享? 踩过的坑没必要让别人在再踩,自己复盘也能加深记忆。利己利人、所谓双赢。 文章目录 前言错误信息解决方法 前言 错误…

【中间件篇-Redis缓存数据库07】Redis缓存使用问题及互联网运用

Redis缓存使用问题 数据一致性 只要使用到缓存,无论是本地内存做缓存还是使用 redis 做缓存,那么就会存在数据同步的问题。 我以 Tomcat 向 MySQL 中写入和删改数据为例,来给你解释一下,数据的增删改操作具体是如何进行的。 我…

帝国CMS仿核弹头H5小游戏模板/帝国CMS内核仿游戏网整站源码

帝国CMS仿核弹头H5小游戏模板,帝国CMS内核仿游戏网整站源码。比较适合小游戏发布、APP应用资讯类网站使用,有兴趣的可以二次开发试试。 下载地址:https://bbs.csdn.net/topics/617579435

jenkins+centos7上传发布net6+gitlab

工作中实践了一下jenkins的操作,所以记录一下这次经验,没有使用到docker 先看下成果: 选择发布项目 选择要发布的分支 构建中 发布成功 开始 首先安装好jenkins并注册自己的jenkins账号 因为我们的项目代码管理使用的是gitlab&#xff0c…

C语言指针详解(1)(能看懂字就能明白系列)文章超长,慢慢品尝

目录 1、内存和地址 2、指针简介 与指针相关的运算符: 取地址操作符(&) 解引用操作符(间接操作符)(*) ​编辑 指针变量的声明 指针变量类型的意义 指针的基本操作 1、指针与整数相加…

(论文阅读)TiDB:一款基于Raft的HTAP数据库

引言 混合事务分析处理(HTAP)数据库要求隔离处理事务查询和分析查询,以消除它们之间的干扰。要实现这一点,有必要维护为这两种查询类型指定的数据的不同副本。然而,为存储系统中的分布式副本提供一致的视图是一项挑战…

后端接口性能优化分析-数据库优化

👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家📕系列专栏:Spring源码、JUC源码🔥如果感觉博主的文章还不错的话,请👍三连支持&…

ROS话题(Topic)通信:自定义msg - 例程与讲解

在 ROS 通信协议中,数据是以约定好的结构传输的,即数据类型,比如Topic使用的msg,Service使用的srv,ROS 中的 std_msgs 封装了一些原生的数据类型,比如:Bool、Char、Float32、Int64、String等&am…

002 OpenCV dft 傅里叶变换

目录 一、傅里叶变换 1.1 傅里叶变换概念 1.2 opencv中傅里叶变换 二、实验代码 一、环境 本文使用环境为: Windows10Python 3.9.17opencv-python 4.8.0.74 二、傅里叶变换 2.1 傅里叶变换概念 傅里叶变换(Fourier Transform)是一种…

Java怎么对复杂的数据类型排序和比大小

目录 一.对复杂的数据类型比大小 Comparable接口 compareTo方法 二.对复杂数据类型排序 三.总结 一.对复杂的数据类型比大小 假如我们现在有个学生类,并且我们实例化出了俩个学生对象,他们各自有各自的名字和年龄属性,我们如何对他们进…