【论文阅读】(VAE-GAN)Autoencoding beyond pixels using a learned similarity metric

 论文地址;[1512.09300] Autoencoding beyond pixels using a learned similarity metric (arxiv.org) /

一、Introduction

主要讲了深度学习中生成模型存在的问题,即常用的相似度度量方式(使用元素误差度量)对于学习良好的生成模型存在一定的障碍,并提出了一种新的方法——使用学习到的相似度度量方式来改善生成模型的性能。同时,该部分还介绍了如何学习这种相似度度量方式,即通过联合训练变分自编码器(VAE)和生成对抗网络(GAN)来使用GAN鉴别器来度量样本之间的相似度。

注意:

使用学习相似性度量训练的生成模型与使用元素误差度量训练的模型的区别在于相似性度量的方式不同。使用元素误差度量训练的模型是默认的选择,它使用像平方误差这样的逐元素度量来衡量重建质量。而使用学习相似性度量训练的生成模型则可以使用更高级的、基于特征的度量来衡量重建质量,并且可以在学习中提供更好的数据分布建模。这种方法可以更好地捕捉图像数据的特性,例如对平移等变性的不变性,从而提高生成模型的性能。

二、Autoencoding with learned similarity

本章节主要介绍了如何使用学习到的相似度度量来改进生成模型,特别是在学习像变分自编码器(VAE)这样的模型时,元素级别的相似度度量会成为训练信号的主要组成部分。文章提出了一种基于联合训练VAE和生成对抗网络(GAN)的方法,将GAN鉴别器中学习到的特征表示作为VAE重构目标的基础,从而用特征级别的相似度度量替换元素级别的误差,更好地捕捉数据分布。文章还介绍了如何在人脸图像上应用该方法,并展示了该方法比使用元素级别相似度度量的VAE在视觉保真度方面表现更好的结果。此外,文章还展示了该方法学习到的嵌入空间具有高级别的抽象视觉特征,可以通过简单的算术操作进行修改。

三、Related Work

讨论了之前的相关研究,特别关于使用自编码器进行特征学习和图像重建的研究它提到了一些使用变分自编码器和生成对抗网络方法来提高自编码器重建质量和学习更好的征表示的研究。此外,该部分还介绍了一些特征匹配和相似度度量的方法来比较图像相性的研究。

总结:

本文介绍了一种基于学习相似度度量的自编码器,该自编码器结合了变分自编码器和生成对抗网络的优点,使用GAN鉴别器中学习到的特征表示作为VAE重构目标的基础,从而用特征级别的误差代替元素级别的误差更好地捕捉数据分布。作者在人脸图像数据集上的实验结果表明,与使用元素级别相似度度量的VAE相比,该方法在视觉保真度方面表现更好,同时也展示了该方法学习到了一个内在空间,其中高级别的抽象视觉特征(如戴眼镜)可以通过简单的算术运算进行修改。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/146067.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于JavaWeb+SSM+购物系统微信小程序的设计和实现

基于JavaWebSSM购物系统微信小程序的设计和实现 源码获取入口前言主要技术系统设计功能截图Lun文目录订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 前言 第一章 绪 论 1.1选题背景 互联网是人类的基本需求,特别是在现代社会,…

制造业工厂的MES系统数据采集功能概述

一、MES系统与数据采集 MES系统是专门针对制造业工厂的信息化管理系统,旨在提高生产效率、降低成本、优化资源配置。数据采集作为MES系统的重要功能之一,能够实时获取生产现场的数据信息,为生产管理提供可靠的决策依据。 二、MES数据采集功能…

LLM(四)| Chinese-LLaMA-Alpaca:包含中文 LLaMA 模型和经过指令微调的 Alpaca 大型模型

论文题目:《EFFICIENT AND EFFECTIVE TEXT ENCODING FOR CHINESE LL AMA AND ALPACA》 ​论文地址:https://arxiv.org/pdf/2304.08177v1.pdf Github地址:https://github.com/ymcui/Chinese-LLaMA-Alpaca 一、项目介绍 通过在原有的LLaMA词…

基于ssm+vue交通事故档案系统

摘要 摘要是对文章、论文或其他文本的主要观点、结论和关键信息的简洁概括。由于你没有提供具体的文章或主题,我将为你创建一个通用的摘要。 本文介绍了一种基于SSM(Spring Spring MVC MyBatis)和Vue.js的交通事故档案管理系统的设计与实现…

NewStarCTF2023 Reverse方向Week3 ez_chal WP

分析 题目&#xff1a;ez_chal 一个XTEA加密&#xff0c; V6是key&#xff0c;v5是输入&#xff0c;然后v7就是密文。 看了v6&#xff0c;要用动调。 ELF文件用ida的远程调试。 然后在kali上输入长度为32的flag 全部转换成dd 再提取密文。 EXP #include <stdio.h>…

mysql统计整个数据库记录条数

SELECTSUM(TABLE_ROWS) FROM(SELECTTABLE_NAME,TABLE_ROWSFROMINFORMATION_SCHEMA.TABLESWHERETABLE_SCHEMA 数据库名&#xff0c;其他不变) t;效果如下&#xff1a;

单片机FLASH下载算法的制作

环境 硬件使用正点原子STM32F407探索者V2开发板 编程环境使用MDK 下载工具使用JLINK FLASH芯片使用W25Q128 什么是下载算法 单片机FLASH的下载算法是一个FLM文件&#xff0c;FLM通过编译链接得到&#xff0c;其内部包含一系列对FLASH的操作&#xff0c;包括初始化、擦除、写…

demo(三)eurekaribbonhystrix----服务降级熔断

一、介绍&#xff1a; 1、雪崩&#xff1a; 多个微服务之间调用的时候&#xff0c;假如微服务A调用微服务B和微服务C&#xff0c;微服务B和微服务C又调用其他的微服务&#xff0c;这就是所谓的"扇出"。如果扇出的链路上某个微服务的调用响应的时间过长或者不可用&am…

【Android】设置全局标题栏

序言 在做项目的时候&#xff0c;有时候需要一个全局统一的标题栏&#xff0c;保证项目风格的统一&#xff0c;但是如果在每个activity上面都写一遍这个标题栏就很麻烦了&#xff0c;我们经常用的方法就是写个基类Activity&#xff0c;然后当某个Activity需要这个统一的标题栏…

web 服务

作业&#xff1a;请给openlab搭建web网站 网站需求&#xff1a; 1.基于域名 www.openlab.com 可以访问网站内容为 welcome to openlab!!! 2.给该公司创建三个子界面分别显示学生信息&#xff0c;教学资料和缴费网站&#xff0c; 1、基于 www.openlab.com/student 网站访问学生信…

简单解决网页的验证码

翻到一个网站,展开需要验证码,而验证码需要关注微信公众号,懒得弄,所以有了这篇文章 首先,先看一下F12中的网络(Network),发现并没有使用网络动态验证 那么这个验证码必定是写在资源文件中的 在确定按钮上看到如下元素监听(Event Listeners) 进入打断点 成功断下 单步跟到…

JSplacement丨随机生成置换贴图

界面很简单&#xff0c;虽然是英文&#xff0c;但基本也能看懂&#xff0c;参数调一调&#xff0c;随机生成不重复的8K高清图片。 这种图片可能对普通人感觉很奇怪&#xff0c;有什么用呢&#xff1f;会C4D建模渲染的同学应该会明白&#xff0c;特别是建一些科技类的场景背景&a…

[C/C++]数据结构 链表OJ题:随机链表的复制

题目描述: 给你一个长度为 n 的链表&#xff0c;每个节点包含一个额外增加的随机指针 random &#xff0c;该指针可以指向链表中的任何节点或空节点。 构造这个链表的 深拷贝。 深拷贝应该正好由 n 个 全新 节点组成&#xff0c;其中每个新节点的值都设为其对应的原节点的值。新…

【AI视野·今日NLP 自然语言处理论文速览 第六十二期】Wed, 25 Oct 2023

AI视野今日CS.NLP 自然语言处理论文速览 Wed, 25 Oct 2023 (showing first 100 of 112 entries) Totally 100 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers MuSR: Testing the Limits of Chain-of-thought with Multistep Soft R…

为开发GPT-5,OpenAI向微软寻求新融资

11月14日&#xff0c;金融时报消息&#xff0c;OpenAI正在向微软寻求新一轮融资&#xff0c;用于开发超级智能向AGI&#xff08;通用人工智能&#xff09;迈进&#xff0c;包括最新模型GPT-5。 最近&#xff0c;OpenAI召开了首届开发者大会&#xff0c;推出了GPT-4 Turbo、自定…

大数据基础设施搭建 - Hadoop

文章目录 一、下载安装包二、上传压缩包三、解压压缩包四、配置环境变量五、测试Hadoop5.1 测试hadoop命令5.2 测试wordcount案例5.2.1 创建wordcount输入文本信息5.2.2 执行程序5.2.3 查看结果 六、分发压缩包到集群中其他机器6.1 分发压缩包6.2 解压压缩包6.3 配置环境变量 七…

视频一键转码:批量转换MP4视频的技巧

随着数字媒体设备的普及&#xff0c;视频文件在生活中扮演着越来越重要的角色。而在处理视频文件时&#xff0c;有时需要将其转换为不同的格式以适应不同的需求。其中&#xff0c;MP4格式因其通用性和高质量而备受青睐。本文详解云炫AI智剪如何一键转码的技巧&#xff0c;帮助批…

在webstorm中配置sass编译环境

1.下载ruby 下载地址&#xff1a;ruby下载 2.安装ruby 下载之后&#xff0c;有一个exe安装包 双击exe文件 &#xff0c;并选择自己的安装位置&#xff08;这个位置一定要记得&#xff0c;需要在webstorm中使用&#xff09;。其他的步骤默认安装即可。 3.安装sass ruby安装成功后…

爬虫----robots.txt 协议简介

文章目录 robots.txt 是一个用于指示网络爬虫(web spider或web robot)如何与网站上的内容进行交互的协议。这个文件被网站管理员放置在网站的根目录下,用于告知爬虫哪些部分的网站是可以被抓取的,哪些是不被允许的。以下是 robots.txt 协议的一些关键要点: 控制爬虫访问:…

HTML5响应式网页设计(考试题:旅游项目)

效果图 .html代码 <!DOCTYPE html> <html><head><meta name"viewport"content"widthdevice-width,initial-scale1,minimum-scale1,maximum-scale1,user-scalableno" /><meta charset"utf-8" /><title></…