【大话Presto 】- 核心概念

文章目录

  • 前言
  • Operator Model And Iterator Model
  • 系统组成
  • Connector
  • 数据模型
  • 查询执行模型
    • Statement
    • Stage
    • Task
    • Split
    • Driver
    • Operator
    • Exchange
    • PipeLine
  • 总结

在这里插入图片描述

前言

Presto(PrestoDB)是一个FaceBook开源的分布式MPP SQL引擎,旨在处理大规模数据的查询和分析问题。传统数据库系统(eg:Hive)在面对大规模数据和复杂查询需求时存在限制,如数据规模限制、查询速度慢、数据源集成困难等问题。
本文主要介绍下Presto基本的核心概念。

Operator Model And Iterator Model

MPP核心的迭代器模型;操作模块化;执行计划等模型与实现框架设计,可参考最早的1995年Goetz Graefe发布的encapsulation-volcano论文:
http://daslab.seas.harvard.edu/reading-group/papers/encapsulation-volcano.pdf
论文中首次提出了一种并行SQL的设计,即通过各种Operator(如TableScan、Project、Filter、Aggregate、Exchange、Join等)组成一棵树,树的根节点产生SQL输出,树的叶子节点是各种TableScan,数据从叶子节点流入,一步步被加工直至产生最终结果。这个模型称为Operator Model,这棵树我们称之为执行计划(Plan,在传统数据库里又分为逻辑计划和物理计划)。
在Operator Model执行的过程中,各节点有三种基本状态(或者说要实现三个接口):Open、GetNext、Close。父节点的接口调用一般会递归调用子节点对应的接口。SQL执行时就从根节点Open开始,然后不断调其GetNext接口得到一行输出(后续演变为得到RowBatch),直到没有结果为止,最后调Close。这个模型称为Iterator Model。

在这里插入图片描述

系统组成

在这里插入图片描述
Presto是典型的M/S架构的系统,由一个Coordinator节点和多个Worker节点组成。 Coordinator负责如下工作:
● 接收用户查询请求,解析并生成执行计划,下发Worker节点执行。
● 监控Worker节点运行状态,各个Worker节点与Coordinator节点保持心跳连接,汇报节点状态。
● 维护MetaStore数据。
Worker节点负责执行下发到任务,通过连接器读取外部存储系统到数据,进行处理,并将处理结果发送给Coordinator节点。
Presto最初不支持高可用架构, 后面FaceBook提出了一个新的设计:一个分解的协调器(disaggregated coordinator),允许 coordinator 在单个 workers pool 中横向扩展。

Connector

Presto通过内置的各种Connector来接入多种外部数据源。Presto提供了一套标准的SPI接口,您可以使用这套接口开发自己的Connector,以便访问自定义的数据源。
通常,一个Catalog会绑定一种类型的Connector,并在Catalog的Properties文件中进行设置。

数据模型

数据模型即数据的组织形式。Presto使用Catalog、Schema和Table三层结构来管理数据。
● Catalog:一个Catalog可以包含多个Schema,物理上指向一个外部数据源,可以通过Connector访问该数据源。一次查询可以访问一个或多个Catalog。
● Schema:相当于一个数据库实例,一个Schema包含多张数据表。
● Table:数据表,与一般意义上的数据库表相同。

查询执行模型

Presto执行SQL语句,并将这些语句转换为coordinators和workers的分布式集群执行的查询。

Statement

Presto执行ANSI兼容的SQL语句,该标准由子句、表达式和谓词组成。
Query
解析一条语句时,它将其转换为一个查询,并创建一个分布式查询计划,然后将其实现为在Presto worker上运行的一系列相互连接的阶段。语句和查询之间的区别很简单。一条语句可以被认为是传递给Presto的SQL文本(Statement),而查询则是指为执行该语句而实例化的配置、组件、查询执行计划和优化信息等。一个查询执行包括Stage、Task、Driver、Split、Operator、DataSource组成,这些组件之间通过内部联系共同组成一个查询执行,从而得到SQL语句表述的查询,并得到相应的结果集。

Stage

Presto执行查询时,通过将执行分解为阶段层次结构来执行。例如需要聚合Hive中存储的十亿行的数据,它会创建一个根阶段来聚合其他几个阶段的输出,所有这些阶段都是为了实现分布式查询计划的不同部分而设计的。组成查询的阶段层次结构类似于树。每个查询都有一个根阶段,负责聚合来自其他阶段的输出。阶段是协调器用来建模分布式查询计划,但是阶段本身并不在Presto worker上运行。

Presto 中Stage共分为4种:

  1. Coordinator_Only: 用于执行DDL或者DML语句中最终的表结构创建或者更改
  2. Single: 用于聚合子Stage的输出是数据,并将最终数据输出给终端用户
  3. Fixed: 用于接受其子Stage产生的数据并在集群中对这些数据进行分布式的聚合或者分组计算
  4. Source: 用于直接连接数据源,从数据源读取数据,在读取数据的时候,该阶段也会根据Presto对查询计划执行的优化完成相关的断言下发(Predicate PushDown)和条件过滤
    按照数据的流向,我们可以约定越靠近数据源的Stage越处于上游,越远离数据源的Stage越处于下游

create table xxx as select
在这里插入图片描述
在这里插入图片描述

Task

Stage对分布式查询计划的特定部分建模,但Stage本身并不在Presto Worker上执行。Task是Presto体系结构中的工作项,因为分布式查询计划被分解为一系列Stage,然后转换为Task,然后这些Task作用于或处理Split。Presto Task有输入和输出,就像一个Stage可以由一系列Task并行执行一样,一个Task也可以与一系列驱动程序并行执行。

Split

Split分片,一个分片其实就是一个大的数据集中的一个小的子集,Driver是作用于一个分片上的一系列操作的集合,而每个节点上运行的Task,又包含多个Driver,从而一个Task可以处理多个Split。当Presto执行一个查询时,首先会从Coordinator得到一个表对应的所有的Split,然后Presto就会根据查询执行计划,选择合适的节点运行响应的task处理Split。
这里来看下在HiveConnector中HiveSplit的定义:

在这里插入图片描述
在这里插入图片描述

Driver

Task包含一个或多个并行Driver。Driver作用于数据并结合Operator以产生输出,然后由一个Task聚合,然后交付给另一个Stage的另一个Task。Driver是操作符实例的序列,它是Presto体系结构中并行度的最低级别。Driver有一个输入和一个输出。

Operator

Operator过滤、加权、消费、转换和生成数据。例如,TableScan从Connector获取数据并生成可被其他Operator使用的数据,筛选Opertaor使用数据并通过对输入数据应用谓词来生成子集。

Exchange

交换在Presto节点之间为查询的不同阶段传输数据。任务将数据生成到输出缓冲区,并使用交换客户机使用来自其他任务的数据。

PipeLine

每个Task执行一个Stage的逻辑,也可以说就是执行一个PlanFragment里的Operator,这些Operator的最佳并行度可能是不同的。比如说做Tablescan的并发可以很大,但做Final Aggregation(如Sort)的并发度只能是一。基于这个考虑,一个PlanFragment又会被切分为若干Pipeline,每个Pipeline由一组Operator组成,这些Operator被设置同样的并行度。Pipeline之间会通过LocalExchangeOperator来传递数据。

在Presto的Web UI里可以看到下面的Pipeline图。Driver的数目就是这个Pipeline的并行度。

在这里插入图片描述

总结

在这里插入图片描述

如图 Presto的一次执行查询会被分解为多个Stage, Stage之间具有依赖关系,每个Stage由一列的Task组成,每个Stage的task被均分为在每个worker上并行执行,每个Task又由多个Driver组成,每个Driver只能处理一个Split, 且每个Driver由一系列前后相连的operator组成,每个Operator都代表对于一个Split的操作

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/145644.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

全新的FL studio21.2版支持原生中文FL studio2024官方破解版

FL studio2024官方破解版是一款非常专业的音频编辑制作软件。目前它的版本来到了全新的FL studio21.2版,支持原生中文,全面升级的EQ、母带压线器等功能,让你操作起来更加方便,该版本经过破解处理,用户可永久免费使用&a…

「校园 Pie」 系列活动正式启航,首站走进南方科技大学!

PieCloudDB 社区校园行系列活动「校园 Pie」已正式启动。「校园 Pie」旨在促进数据库领域的学术交流,提供一个平台让学生们了解最新的数据库发展趋势和相关技术应用。 在「校园 Pie」系列活动中,PieCloudDB 社区将携拓数派技术专家,社区大咖…

可以免费使用的设计素材网站分享

UI设计师最怕什么? 没有创意,没有灵感,没有思路! 在哪里可以得到idea?别担心,往下看! 你知道网络有多大,你想要什么吗?今天,我想和大家分享一些宝藏网页设…

用户运营:如何搭建用户分析体系

在运营的工作范畴中,用户运营是很重要的一个环节,甚至有公司会设置专门的“用户运营”岗位。 用户运营的价值体现在多个方面,不仅可以帮助引流、吸引更多用户使用产品,在用户正式使用产品之后的运营则更为重要。通过日常用户运营&…

SpringMVC调用流程

SpringMVC的调用流程 SpringMVC涉及组件理解: DispatcherServlet : SpringMVC提供,我们需要使用web.xml配置使其生效,它是整个流程处理的核心,所有请求都经过它的处理和分发![ CEO ] HandlerMapping : SpringMVC提供&…

第四代智能井盖传感器:万宾科技助力城市安全

在繁华喧嚣的城市里人来人往,井盖作为基础设施的一个组成部分在路面上分布范围广。然而这些看似普通的井盖却存在着位移、水浸的风险,可能给我们的生活带来诸多不便,更会威胁到我们的人身安全。如何有效监测和管理井盖的状态,成为…

为什么选择CodeEase?

目录 为什么选择CodeEase核心功能后端前端 框架结构总结 为什么选择CodeEase CodeEase是一个标准化的低代码平台 愿景 我们励志开发一站式服务,缩短网站开发周期,降低程序bug率,减少开发人力和成本,推出了多租户SaaS平台开发模板…

SpringCloud Alibaba组件入门全方面汇总(上):注册中心-nacos、负载均衡-ribbon、远程调用-feign

文章目录 NacosRibbonFeignFeign拓展 Nacos 概念:Nacos是阿里巴巴推出的一款新开源项目,它是一个更易于构建云原生应用的动态服务发现、配置管理和服务管理平台。Nacos致力于帮助用户发现、配置和管理微服务,它提供了一组简单易用的特性集&am…

电源地虚接,导致信号线发烫

音频板的信号是经过隔直电容接到音频板的。

【Linux专题】firewalld 过滤出接口流量

【赠送】IT技术视频教程,白拿不谢!思科、华为、红帽、数据库、云计算等等_厦门微思网络的博客-CSDN博客文章浏览阅读428次。风和日丽,小微给你送福利~如果你是小微的老粉,这里有一份粉丝福利待领取...如果你是新粉关注到了小微&am…

智慧工地解决方案,实现安全预警、机械智能监控、作业指导、绿色施工、劳务管理、工程进度监控、施工质量检查

智慧工地云平台全套源码 智慧工地平台采用先进的云计算、物联网和大数据技术,可以实现智慧工地方案的落地。能够实现实时掌控工地活动及各项进度,有效预防违章施工。能够为工地提供多项服务,如安全预警、机械智能监控、作业指导、绿色施工、劳…

JVM bash:jmap:未找到命令 解决

如果我们在使用JVM的jmap命令时遇到了"bash: jmap: 未找到命令"的错误,这可能是因为jmap命令没有在系统的可执行路径中。 要解决这个问题,可以尝试以下几种方法: 1. 检查Java安装:确保您已正确安装了Java Development …

Spring Boot EasyPOI 使用指定模板导出Excel

相信大家都遇到过,用户提出要把界面上的数据导成一个Excel,还得是用户指定的Excel格式,用原生的POI,需要自己去实现,相信是比较麻烦的,所以我们可以使用开源的EasyPOI. 先上个图,看看是不是大家…

Newman

近期在复习Postman的基础知识,在小破站上跟着百里老师系统复习了一遍,也做了一些笔记,希望可以给大家一点点启发。 一)如何安装Newman 1、下载并安装NodeJs 在官网下载NodeJs: Download | Node.js(官网的…

2023.11.14 关于 Spring Boot 创建和使用

目录 Spring Boot Spring Boot 项目的创建 网页版创建 Spring Boot 项目 Spring Boot 目录说明 项目运行 Spring Boot Spring Boot 是基于 Spring 设计的一个全新的框架,其目的是用来简化 Spring 的应用、初始搭建、开发的整个过程Spring Boot 就是一个整合了…

初认识vue,v-for,v-if,v-bind,v-model,v-html等指令

vue 一.vue3介绍 1.为什么data是函数而不是对象? 因为vue是组件开发,组件会多次复用,data如果是对象,多次复用是共享,必须函数返回一个新的对象 1. 官网初识 Vue (发音为 /vjuː/,类似 view) 是一款用于构建用户界面的 JavaScript 框架。它基于标准 HTML、CSS …

大数据爬虫分析基于Python+Django旅游大数据分析系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 基于Python和Django的旅游大数据分析系统是一种使用Python编程语言和Django框架开发的系统,用于处理和分…

DSP生成hex方法

以下使用两种方法生成的HEX文件,亲测可用 (1)万能法 不管.out文件是哪个版本CCS编译器生成的,只要用HEX2000.exe软件,翻译都可以使用。方法: hex2000 -romwidth 16 -memwidth 16 -i -o 20170817chuankou…

12V升压18V 1A 内置MOS 升压芯片5-35V输入内置MOS升压IC

12V升压18V 1A 内置MOS 升压芯片5-35V输入内置MOS升压IC

数据治理入门

处理模式 模式名称常见场景常见框架批处理夜间几个小时,无人值守hive spark datax流处理7*24H一直运行,无人值守maxwell, flink, flume, kafka即席处理人机交互接口访问 web页面 数据治理的意义 数据质量低:数据错误,不准确或不…