scipy实现单因素方差分析

经典例题

某校高二年级共有四个班,采用四种不同的教学方法进行数学教学,为了比较这四种教学法的效果是否存在明显的差异,期末统考后,从这四个班中各抽取 5 名考生的成绩,如下所示。

班级

一班

二班

三班

四班

1

75

93

65

72

2

77

80

67

70

3

70

85

77

71

4

88

90

68

65

5

72

84

65

81

6

80

86

64

72

7

79

85

62

68

8

81

81

68

74

问这四种教学法的效果是否存在显著性差异(α =0.05)?

1.计算F值

import numpy as np
from scipy.stats import f_oneway# Data for the four classes
class1 = [75, 77, 70, 88, 72, 80, 79, 81]
class2 = [93, 80, 85, 90, 84, 86, 85, 81]
class3 = [65, 67, 77, 68, 65, 64, 62, 68]
class4 = [72, 70, 71, 65, 81, 72, 68, 74]# Perform one-way ANOVA
f_statistic, p_value = f_oneway(class1, class2, class3, class4)# Output the results
print("F-statistic:", f_statistic)
print("P-value:", p_value)# Interpret the results
alpha = 0.05
if p_value < alpha:print("There is a significant difference in the effectiveness of the teaching methods.")
else:print("There is no significant difference in the effectiveness of the teaching methods.")
F-statistic: 22.045992451864645
P-value: 1.5622062333927252e-07
There is a significant difference in the effectiveness of the teaching methods.

2.计算SS、df和F值

import numpy as np
import pandas as pd
from scipy.stats import f_oneway, f# Data for the four classes
class1 = [75, 77, 70, 88, 72, 80, 79, 81]
class2 = [93, 80, 85, 90, 84, 86, 85, 81]
class3 = [65, 67, 77, 68, 65, 64, 62, 68]
class4 = [72, 70, 71, 65, 81, 72, 68, 74]# Perform one-way ANOVA
f_statistic, p_value = f_oneway(class1, class2, class3, class4)# Degrees of freedom
num_groups = 4
num_samples = len(class1) + len(class2) + len(class3) + len(class4)
df_between = num_groups - 1
df_within = num_samples - num_groups# Calculate sum of squares (SS)
mean_total = np.mean([np.mean(class1), np.mean(class2), np.mean(class3), np.mean(class4)])
ss_total = np.sum((np.concatenate([class1, class2, class3, class4]) - mean_total) ** 2)
ss_between = np.sum([len(class1) * (np.mean(class1) - mean_total) ** 2,len(class2) * (np.mean(class2) - mean_total) ** 2,len(class3) * (np.mean(class3) - mean_total) ** 2,len(class4) * (np.mean(class4) - mean_total) ** 2])
ss_within = np.sum((class1 - np.mean(class1)) ** 2) + \np.sum((class2 - np.mean(class2)) ** 2) + \np.sum((class3 - np.mean(class3)) ** 2) + \np.sum((class4 - np.mean(class4)) ** 2)# Calculate mean squares (MS)
ms_between = ss_between / df_between
ms_within = ss_within / df_within# Calculate F-statistic
f_statistic_manual = ms_between / ms_within# Critical F-value
alpha = 0.05
f_crit = f.ppf(1 - alpha, df_between, df_within)# Create a DataFrame for better tabular representation
data = {'Class 1': class1,'Class 2': class2,'Class 3': class3,'Class 4': class4,
}df = pd.DataFrame(data)# Output the ANOVA results
print("Analysis of Variance (ANOVA):")
print("F-statistic (from scipy.stats):", f_statistic)
print("P-value (from scipy.stats):", p_value)
print("\nManual Calculation:")
print("SS Between:", ss_between)
print("SS Within:", ss_within)
print("DF Between:", df_between)
print("DF Within:", df_within)
print("MS Between:", ms_between)
print("MS Within:", ms_within)
print("F-statistic (manual calculation):", f_statistic_manual)
print("Critical F-value:", f_crit)# Interpret the results
if p_value < alpha:print("\nThere is a significant difference in the effectiveness of the teaching methods.")
else:print("\nThere is no significant difference in the effectiveness of the teaching methods.")
Manual Calculation:
SS Between: 1538.59375
SS Within: 651.375
DF Between: 3
DF Within: 28
MS Between: 512.8645833333334
MS Within: 23.263392857142858
F-statistic (manual calculation): 22.045992451864645
Critical F-value: 2.9466852660172655

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/144891.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LC142.环形链表II

/*** 题目链接&#xff1a;https://leetcode.cn/problems/linked-list-cycle-ii/* 使用 map集合来存储链表的结点&#xff0c;在每次添加节点的时候使用map.containsValue()方法进行判断&#xff0c;* 如果存在相同的节点&#xff0c;就说明有环&#xff0c;然后返回当前节点* …

【软件安装】Centos系统中安装docker容器(华为云HECS云耀服务器)

这篇文章&#xff0c;主要介绍Centos系统中安装docker容器&#xff08;华为云HECS云耀服务器&#xff09;。 目录 一、安装docker 1.1、卸载旧版本docker 1.2、更新repo镜像 1.3、安装依赖包 1.4、添加docker-ce镜像 1.5、安装docker-ce 1.6、查看docker安装版本 1.7、…

Maven介绍及仓库配置

目录 一.Maven 1.介绍 坐标 仓库 1&#xff09;中央仓库 2&#xff09;本地仓库 3&#xff09;私服 配置国内源 配置过程 二.Maven功能 2.项目构建 3.依赖管理 Maven Help插件 安装 ​使用 一.Maven 1.介绍 坐标 唯一的&#xff0c;通过以下代码的三个键值对确…

【AI视野·今日CV 计算机视觉论文速览 第277期】Fri, 27 Oct 2023

AI视野今日CS.CV 计算机视觉论文速览 Fri, 27 Oct 2023 Totally 93 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computer Vision Papers A Coarse-to-Fine Pseudo-Labeling (C2FPL) Framework for Unsupervised Video Anomaly Detection Authors Anas Al lahham…

微信小程序wxss定位/选择/查找元素的几种方式

wxss定位、选择、查找元素的几种方式与css类似&#xff0c;下面介绍常用的几种&#xff1a; 选择器样例样例描述.class.intro选择所有拥有 class"intro" 的组件#id#firstname选择拥有 id"firstname" 的组件elementview选择所有 view 组件element, element…

『Vscode 自定义折叠代码』

vscode 编辑器内部的代码折叠&#xff0c;都是规定好的代码块的&#xff0c;比较 死板。 假设我想将任意的代码&#xff0c;都全部折叠起来&#xff0c;该如何操作呢&#xff1f; 答案&#xff1a;#region 和 #endregion。 ✅ CSS / Less / Scss 代码中&#xff0c;示例如下&…

Spring-IoC与DI入门案例

IoC入门案例 IoC入门案例思路分析 管理什么&#xff1f;&#xff08;Service与Dao&#xff09;如何将被管理的对象告知IoC容器&#xff1f;&#xff08;配置&#xff09;被管理的对象交给IoC容器&#xff0c;如何获取到IoC容器&#xff1f;&#xff08;接口&#xff09;IoC容…

学习c#的第十五天

目录 C# 预处理器指令 C# 预处理器指令列表 #define 预处理器 条件指令 #warning 和 #error #region 和 #endregion #line #pragma C# 预处理器指令 预处理器指令指导编译器在实际编译开始之前对信息进行预处理。 所有的预处理器指令都是以 # 开始。且在一行上&#…

Python去除中文文本中的特殊字符

最近需要去除文本中的特殊字符&#xff0c;例如下面从pdf读取的文本&#xff0c;需要进行解析&#xff1a; 山东师范大学硕士学位论文\n13第三章基于粗-细粒度双层注意力的视频-文本跨模态检索\n3.1粗-细粒度并行注意力网络结构\n图3-1展示了粗-细粒度并行注意力(CFGPA)模型的…

Vue 组件的全局注册与组件的jsx实现方法

大部分情况下我们都会使用template来创建html&#xff0c;开发体验会更好&#xff0c;但并不是每个时候使用它来创建 html 都是最佳的&#xff0c;所以官方提供了接近原生构建html的render()函数&#xff0c;让开发者能够依据自己的情况选择更好的构建方式。 有些同学会问&…

tcpdump wireshark简单使用

tcpdump工作原理 tcpdump 是 Linux 系统中非常有用的网络工具&#xff0c;运行在用户态&#xff0c;本质上是通过调用 libpcap 库的各种 api 来实现数据包的抓取功能&#xff0c;利用内核中的 AF_PACKET 套接字&#xff0c;抓取网络接口中传输的网络包。查 看 tcpdump 的 手册…

JVM实战-JVM之类加载时机

目录 JVM实战-JVM之类加载时机1 主动引用2 被动引用 JVM实战-JVM之类加载时机 Java虚拟机把描述类的数据从Class文件加载到内存&#xff0c;并对数据进行校验、转换解析和初始化&#xff0c;最终形成可以被虚拟机直接使用的Java类型&#xff0c;这个过程被称作虚拟机的类加载机…

JS 读取excel文件内容 和 将json数据导出excel文件

一、实现将json数据导出为excel文件 1、通过原生js实现 核心方法&#xff1a; function JSONToExcelConvertor(JSONData, FileName, title, filter) {if (!JSONData)return;//转化json为objectvar arrData typeof JSONData ! object ? JSON.parse(JSONData) : JSONData;va…

STM32 LL库 TIM3定时器多通道捕获输入采集

为什么不用HAL库&#xff0c;使用HAL库捕获输入一个通道还尚可&#xff0c;多通道捕获由于HAL的回调函数不符合我的要求&#xff0c;干脆直接切换到LL库。网上找了许多&#xff0c;代码处理写的不符合我的要求&#xff0c;这里记录一下我的调试过程。 TIM2输出1路PWM信号&#…

Beautiful Soup爬取数据html xml

简介 Beautiful Soup是一个Python库&#xff0c;用于从HTML或XML文件中提取数据。 它提供了一种简单而灵活的方式来解析和遍历HTML或XML文档&#xff0c;并提供了一些有用的方法来提取所需的数据。 安装 pip install beautifulsoup4使用 导入库&#xff1a;在Python脚本的开…

数据同步到Redis消息队列,并实现消息发布/订阅

一、假设需求&#xff1a; 某系统在MySQL某表中操作了一条数据在其他系统中&#xff0c;实时获取最新被操作数据的数据库名、数据表名、操作类型、数据内容 应用场景&#xff1a; 按最近项目的一个需求来说&#xff1a; 1.当某子系统向报警表中新增了一条报警数据&#xff1b;…

4.4.2.1 内部类

内部类 成员内部类 定义 调用内部类 访问修饰符的影响 外部类的成员变量及成员方法在内部类的使用 内部类在外部类的使用 静态内部类 静态内部类调用非静态外部类 1

Java使用Redis的几种客户端介绍

Redis是一种高性能的内存数据库&#xff0c;可以提供快速的数据读写操作。在Java中使用Redis&#xff0c;需要使用Redis客户端。目前&#xff0c;Java中常用的Redis客户端有以下几种&#xff1a; Jedis Jedis是Java中最流行的Redis客户端之一&#xff0c;它提供了丰富的API和…

英飞凌Tc275使用记录:Can邮箱号确认与Busoff寄存器设置方法

目录 1、消息后处理 2、消息暂存 3、Tc275 Busoff的寄存器手动处理 1、消息后处理 消息对象成功接收或发送帧后&#xff0c;可以通知CPU对消息对象执行后处理。MultiCAN模块的后处理由两个部分组成: 消息中断触发后处理。消息挂起寄存器将挂起的消息中断收集到一个公共结构中…