【Pytorch笔记】7.torch.nn (Convolution Layers)

我们常用torch.nn来封装网络,torch.nn为我们封装好了很多神经网络中不同的层,如卷积层、池化层、归一化层等。我们会把这些层像是串成一个牛肉串一样串起来,形成网络。

先从最简单的,都有哪些层开始学起。

Convolution Layers - 卷积层

torch.nn.Conv1d()

1维卷积层。

torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

in_channels:输入tensor的通道数;
out_channels:输出tensor的通道数;
kernel_size:卷积核的大小;
stride:步长;
padding:输入tensor的边界填充尺寸;
dilation:卷积核之间的间距(下面这个图为dilation=2),默认为1;
在这里插入图片描述

groups:从输入通道到输出通道的阻塞连接数。in_channelout_channel需要能被groups整除。更具体地:
groups=1时所有输入均与所有输出进行卷积,groups=2时该操作相当于并排设置两个卷积层,每卷积层看到一半的输入通道,产生一半的输出通道,然后将两个卷积层连接起来。groups=in_channel时输入的每个通道都和相应的卷积核进行卷积;
bias:是否添加可学习的偏差值,True为添加,False为不添加。
padding_mode:填充模式,有以下取值:zeros(这个是默认值)、reflectreplicatecircular

import torch
import torch.nn as nnm = nn.Conv1d(in_channels=16,out_channels=33,kernel_size=3,stride=2)
# input: 批大小为20,每个数据通道为16,size=50
input = torch.randn(20, 16, 50)
output = m(input)
print(output.size())

输出

# output: 批大小为20,每个数据通道为33,size=24
torch.Size([20, 33, 24])

torch.nn.Conv2d()

2维卷积层。

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

参数与Conv1d()基本一样,不再赘述。

import torch
import torch.nn as nnm = nn.Conv2d(in_channels=2,out_channels=3,kernel_size=3,stride=2)
input = torch.randn(20, 2, 5, 6)
output = m(input)
print(output.size())

输出

torch.Size([20, 3, 2, 2])

torch.nn.Conv3d()

3维卷积层。

torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

参数与Conv1d()基本一样,不再赘述。

import torch
import torch.nn as nnm = nn.Conv3d(in_channels=2,out_channels=3,kernel_size=3,stride=2)
input = torch.randn(20, 2, 4, 5, 6)
output = m(input)
print(output.size())

输出

torch.Size([20, 3, 1, 2, 2])

torch.nn.ConvTranspose1d()

1维转置卷积层。

torch.nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)

参数与Conv1d()基本一样,不再赘述。
唯一不同的是output_padding,与padding不同的是,output_padding是输出tensor的每一个边,外面填充的层数。
padding是输入tensor的每个边填充的层数)

import torch
import torch.nn as nnm = nn.ConvTranspose1d(in_channels=2,out_channels=3,kernel_size=3,stride=1)
input = torch.randn(20, 2, 2)
output = m(input)
print(output.size())

输出

torch.Size([20, 3, 4])

torch.nn.ConvTranspose2d()

2维转置卷积层。

torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)

参数与Conv1d()基本一样,不再赘述。

import torch
import torch.nn as nnm = nn.ConvTranspose2d(in_channels=2,out_channels=3,kernel_size=3,stride=1)
input = torch.randn(20, 2, 2, 2)
output = m(input)
print(output.size())

输出

torch.Size([20, 3, 4, 4])

torch.nn.ConvTranspose3d()

3维转置卷积层。

torch.nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)

参数与Conv1d()基本一样,不再赘述。

import torch
import torch.nn as nnm = nn.ConvTranspose3d(in_channels=2,out_channels=3,kernel_size=3,stride=1)
input = torch.randn(20, 2, 2, 2, 2)
output = m(input)
print(output.size())

输出

torch.Size([20, 3, 4, 4, 4])

torch.nn.LazyConv1d()

1维延迟初始化卷积层,当in_channel不确定时可使用这个层。
关于延迟初始化,大家可以参考这篇文章,我认为讲的很好:
俱往矣… - 延迟初始化——【torch学习笔记】

torch.nn.LazyConv1d(out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

LazyConv1d没有in_channel参数
这不代表这个层没有输入的通道,而是在调用时自动适配,并进行初始化。
引用文章中的一段代码,改成LazyConv1d,讲述使用方法。

import torch
import torch.nn as nnnet = nn.Sequential(nn.LazyConv1d(256, 2),nn.ReLU(),nn.Linear(9, 10)
)
print(net)
[net[i].state_dict() for i in range(len(net))]low = torch.finfo(torch.float32).min / 10
high = torch.finfo(torch.float32).max / 10
X = torch.zeros([2, 20, 10], dtype=torch.float32).uniform_(low, high)
net(X)
print(net)

输出

Sequential((0): LazyConv1d(0, 256, kernel_size=(2,), stride=(1,))(1): ReLU()(2): Linear(in_features=9, out_features=10, bias=True)
)
Sequential((0): Conv1d(20, 256, kernel_size=(2,), stride=(1,))(1): ReLU()(2): Linear(in_features=9, out_features=10, bias=True)
)

可以看出,未进行初始化时,in_features=0。只有传入参数使用网络后才会根据输入进行初始化。

torch.nn.LazyConv2d()

2维延迟初始化卷积层。

torch.nn.LazyConv2d(out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

torch.nn.LazyConv3d()

3维延迟初始化卷积层。

torch.nn.LazyConv3d(out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

torch.nn.LazyConvTranspose1d()

1维延迟初始化转置卷积层。

torch.nn.LazyConvTranspose1d(out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)

torch.nn.LazyConvTranspose2d()

2维延迟初始化转置卷积层。

torch.nn.LazyConvTranspose2d(out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)

torch.nn.LazyConvTranspose3d()

3维延迟初始化转置卷积层。

torch.nn.LazyConvTranspose3d(out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)

torch.nn.Unfold()

从一个批次的输入张量中提取出滑动的局部区域块。

torch.nn.Unfold(kernel_size, dilation=1, padding=0, stride=1)

kernel_size:滑动块的大小;
dilation:卷积核之间的间距(torch.nn.Conv1d中有图示);
padding:输入tensor的边界填充尺寸;
stride:滑块滑动的步长。

这里的输入必须是4维的tensor,否则会报这样的错误:

NotImplementedError: Input Error: Only 4D input Tensors are supported (got 2D)

示例

import torch
from torch import nnt = torch.tensor([[[[1.,  2.,  3.,  4.],[5.,  6.,  7.,  8.],[9.,  10., 11., 12.],[13., 14., 15., 16.],]]])unfold = nn.Unfold(kernel_size=(2, 2), dilation=1, padding=0, stride=1)
output = unfold(t)
print(output)

输出

tensor([[[ 1.,  2.,  3.,  5.,  6.,  7.,  9., 10., 11.],[ 2.,  3.,  4.,  6.,  7.,  8., 10., 11., 12.],[ 5.,  6.,  7.,  9., 10., 11., 13., 14., 15.],[ 6.,  7.,  8., 10., 11., 12., 14., 15., 16.]]])

在这里插入图片描述

torch.nn.Fold()

Unfold()的逆操作。当Unfold()时出现滑块有重复覆盖时会导致结果和原来不一样。因为Fold()的过程中对于同一个位置的元素进行加法处理。

torch.nn.Fold(output_size, kernel_size, dilation=1, padding=0, stride=1)

下面是Unfold()和Fold()结合的代码,Unfold()部分和上面代码相同。

import torch
from torch import nnt = torch.tensor([[[[1., 2., 3., 4.],[5., 6., 7., 8.],[9., 10., 11., 12.],[13., 14., 15., 16.]]]])unfold = nn.Unfold(kernel_size=(2, 2), dilation=1, padding=0, stride=1)
output = unfold(t)
print(output)
fold = nn.Fold(output_size=(4, 4), kernel_size=(2, 2))
out = fold(output)
print(out)

输出

tensor([[[ 1.,  2.,  3.,  5.,  6.,  7.,  9., 10., 11.],[ 2.,  3.,  4.,  6.,  7.,  8., 10., 11., 12.],[ 5.,  6.,  7.,  9., 10., 11., 13., 14., 15.],[ 6.,  7.,  8., 10., 11., 12., 14., 15., 16.]]])
tensor([[[[ 1.,  4.,  6.,  4.],[10., 24., 28., 16.],[18., 40., 44., 24.],[13., 28., 30., 16.]]]])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/144445.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用 Stable Diffusion Img2Img 生成、放大、模糊和增强

在线工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 3D数字孪生场景编辑器 Stable Diffusion 2022.1 Img5Img 于 2 年发布,是一款革命性的深度学习模型,正在重新定义和推动照片级真实…

小米手机获取电池健康度

目录 方法一:使用Bug反馈功能 1. 打开拨号界面,输入*#*#284#*#* 2. 导出结果,等待即可 3. 找到这个压缩文件 4. 解压缩【我这里直接拷贝到电脑中操作,手机同理】 4.1 解压: 4.2 将得到的新的压缩文档解压 5. 打…

安防监控EasyCVR视频汇聚平台使用海康SDK播放出现花屏是什么原因?

视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同,支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。音视频流媒体视频平台EasyCVR拓展性强,视频能力丰富,具体可实现视频监控直播、视频轮播、视频录像、…

Vue dev-tools的安装

安装 Vue 开发者工具,装插件调试Vue应用 1.通过谷歌应用商店来进行安装(国外网站) 2.极简插件: 搜索 Vue -> 下载解压 -> 浏览器扩展模式打开,开发者模式 -> 将解压的CRX文件拖拽安装 -> 插件详情 &…

vscode Prettier配置

常用配置项: .prettierrc.json 是 Prettier 格式化工具的配置文件 {"printWidth": 200, // 指定行的最大长度"tabWidth": 2, // 指定缩进的空格数"useTabs": false, // 是否使用制表符进行缩进,默认为 false"singl…

华为Matebook X Pro 2022款 i7 集显(MRG-W76)原装出厂Windows11预装系统21H2

下载链接:https://pan.baidu.com/s/12ru9lUeQ7mWd5u1KLCM0Pg?pwdc7pi 提取码:c7pi 原厂系统自带指纹、面部识别、声卡、网卡、显卡等所有驱动、出厂主题壁纸、Office办公软件、华为电脑管家等预装程序,如图 由于时间关系,绝大部分资料没…

照亮夜晚的台灯:户外空间的闪亮之选

户外台灯是家庭和社交空间的重要元素,它们不仅提供照明,还可以为您的户外区域增添美感,以及创造一个温馨的社交氛围。以下是一些关于户外台灯的信息,以帮助您更好地了解它们的多功能性和用途。 1、照明的重要性:户外台…

工作中积累的对K8s的就绪和存活探针的一些认识

首先,我的项目是基于 Spring Boot 2.3.5 的,并依赖 spring-boot-starter-actuator 提供的 endpoints 来实现就绪和存活探针,POM 文件如下图: 下面,再让我们来看下与该项目对应的Deployment的YAML文件,如下…

Mac代码文本编辑器Sublime Text 4

Sublime Text 4 for Mac拥有快速响应的功能,可以快速加载文件和执行命令,并提供多种语言支持,包括C 、Java、Python、HTML、CSS等。此外,该编辑器还支持LaTeX、Markdown、JSON、XML等技术领域。 Sublime Text 4 for Mac的插件丰富…

如何分析伦敦金的价格走势预测?

伦敦金作为国际黄金市场的重要指标,其价格走势一直备受投资者关注。但是,黄金市场的价格变化受到多种因素的影响,因此要准确预测伦敦金的价格走势并非易事。在本文中,将介绍一些常用的方法和工具,帮助您分析伦敦金的价…

金融帝国实验室(Capitalism Lab)V10版本即将推出全新公司徽标(2023-11-13)

>〔在即将推出的V10版本中,我们将告别旧的公司徽标,采用全新光鲜亮丽、富有现代气息的设计,与金融帝国实验室(Capitalism Lab)的沉浸式体验完美互补!〕 ————————————— >〔《公司详细信…

ubuntu20源码编译搭建SRS流媒体服务器

第一、下载源码 下载源码,推荐用Ubuntu20: git clone -b develop https://gitee.com/ossrs/srs.git第二、编译 2.1、切换到srs/trunk目录: cd srs/trunk2.2、执行configure脚本 ./configure2.3、执行make命令 make2.4、修改conf/rtmp.c…

Axure9 基本操作(二)

1. 文本框、文本域 文本框:快速实现提示文字与不同类型文字显示的效果。 2. 下拉列表、列表框 下拉列表:快速实现下拉框及默认显示项的效果。 3. 复选框、单选按钮 4.

Linux 本地zabbix结合内网穿透工具实现安全远程访问浏览器

前言 Zabbix是一个基于WEB界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案。能监视各种网络参数,保证服务器系统的安全运营;并提供灵活的通知机制以让系统管理员快速定位/解决存在的各种问题。 本地zabbix web管理界面限制在只能局域…

关于400G光模块的常见问题解答

最近在后台收到了很多用户咨询关于400G光模块的信息,那400G光模块作为当下主流的光模块类型,有哪些问题是备受关注的呢?下面来看看小易的详细解答! 1、什么是400G QSFP-DD光模块? 答:400G光模块是指传输速…

linux下安装python3.8(有坑)

1安装包下载 ###直接官网下载linux版本,找到对应的包 https://www.python.org/downloads/source/2安装包解压 tar -zxvf Python-3.8.0.tgz 3编译安装 1)设置安装目录,比如在此创建在 /usr/local/python3 : mkdir -p /usr/loca…

在windows下vs c++运行g2o的BA优化程序示例

目录 1、前言2、准备工作安装git安装vcpkg(1)下载(2)安装(3)集成至vs 安装cmake 3、安装g2o4、安装opencv(1)下载(2)双击安装(3)环境变…

Behave介绍和快速示例

Behave是一个用于行为驱动开发 (Behavior-Driven Development, BDD) 的 Python 库。使用 Behave,可以编写自然语言格式的使用场景来描述软件的行为,然后用 Python 实现这些场景下的步骤,形成可直接运行的测试。 Behave的目标是帮助用户、开发…

【入门Flink】- 09Flink水位线Watermark

在窗口的处理过程中,基于数据的时间戳,自定义一个“逻辑时钟”。这个时钟的时间不会自动流逝;它的时间进展,就是靠着新到数据的时间戳来推动的。 什么是水位线 用来衡量事件时间进展的标记,就被称作“水位线”&#x…

你不懂API接口是什么?怎么和程序员做朋友

说到开发平台就一定离不开接口,作为PM,我们不需要对接口了解的特别细。只需要知道接口是什么,有什么用,有哪些要素就行。 1. 接口是什么 (1) 硬件接口 生活中我们经常会接触接口,最常见的就是HDMI接口和USB接口&…