信息检索与数据挖掘 | 【实验】检索评价指标MAP、MRR、NDCG

文章目录

  • 📚实验内容
  • 📚知识梳理
  • 📚实验步骤
    • 🐇前情提要
    • 🐇MAP评价指标函数
    • 🐇MRR 评价指标函数
    • 🐇NDCG评价指标函数
    • 🐇调试结果

📚实验内容

  • 实现以下指标评价,并对Experiment2的检索结果进行评价
    • Mean Average Precision (MAP)
    • Mean Reciprocal Rank (MRR)
    • Normalized Discounted Cumulative Gain (NDCG)

📚知识梳理

  • MAP(Mean Average Precision):平均准确率,是衡量检索结果排序质量的指标。
    • 计算方式是对于每个查询,计算被正确检索的文档的平均精确率,再对所有查询的平均值取均值。
    • 存在意义是衡量对于一个查询,检索结果的平均精确率,适用于评估排序结果精确度的情况。

  • MRR(Mean Reciprocal Rank):平均倒数排名,是衡量检索结果排序质量的指标。
    • 计算方式是对于每个查询,计算被正确检索的文档的最高排名的倒数的平均值,再对所有查询的平均值取均值。
    • 存在意义是衡量对于一个查询,检索结果的排名,适用于评估检索结果排序效果好坏的情况。

  • NDCG(Normalized Discounted Cumulative Gain):归一化折损累积增益,是衡量检索结果排序质量的指标。
    • 计算方式是对于每个查询,对每个被检索到的结果计算其相对于理想排序的增益值,然后对这些相对增益值进行加权求和,再除以理想排序的增益值
    • 存在意义是衡量对于一个查询,检索结果的绝对和相对排序质量,适用于评估排序结果的质量与排名准确度的情况。

  • 这三个指标各有侧重,根据不同的评估需要和数据特征选择合适的指标。例如,对于特定领域的文档检索,可能更关注排名准确度和检索结果的可靠度,因此MRR和NDCG可能比较适合。对于广泛领域的文档检索,可能更关注精确度,因此MAP比较适合。

📚实验步骤

🐇前情提要

  • 本次实验是补充式实验,先给出了qrels_dicttest_dict
  • 构建qrels_dict,根据 qrel.txt 中的 query_id 和对应库中真正相关的 doc_id 的信息构建 qrels_dict={query_id:{doc_id:gain,doc_id:gain,……}}。 遍历文件中的每一行,完成遍历后,返回 qrels_dict:
    • 使用 split(’ ') 将行按空格分隔成列表 ele。
    • 检查 ele[0](query_id)是否已经在 qrels_dict 中。如果不在,将其作为新的查询ID键添加到 qrels_dict 中,并将其对应的值设置为空字典。
    • 检查 ele[3](gain)是否大于0。如果是,将 ele[2](doc_id)作为新的相关文档ID键添加到查询ID键对应的值中,并将其对应的值设置为 ele[3] 的整数形式。
    def generate_tweetid_gain(file_name):qrels_dict = {}with open(file_name, 'r', errors='ignore') as f:for line in f:# 按空格划分ele = line.strip().split(' ')# ele[0]中存放的是query_idif ele[0] not in qrels_dict:qrels_dict[ele[0]] = {}# ele[3]存放的是gain,ele[2]存放的是doc_id# 将gain大于0的存入if int(ele[3]) > 0:qrels_dict[ele[0]][ele[2]] = int(ele[3])return qrels_dict
    
  • 构建test_dict,根据 result.txt 文档中 query 和对应的检索到的 doc 文档对应信息构建 test_dict={query_id:{doc_id,doc_id,……}}。遍历文件中的每一行,完成遍历后,返回 test_dict:
    • 使用 split(’ ') 将行按空格分隔成列表 ele。
    • 检查 ele[0](query_id)是否已经在 test_dict 中。如果不在,将其作为新的查询ID键添加到 test_dict 中,并将其对应的值设置为一个空列表。
    • ele[1](doc_id)添加到查询ID键对应的列表中。
    def read_tweetid_test(file_name):# 输入格式为:query_id doc_idtest_dict = {}with open(file_name, 'r', errors='ignore') as f:for line in f:# 按空格划分ele = line.strip().split(' ')# 这里的ele[0]是query_id,ele[1]是doc_idif ele[0] not in test_dict:test_dict[ele[0]] = []test_dict[ele[0]].append(ele[1])return test_dict
    

🐇MAP评价指标函数

  1. 获取检索到的(test_dict)相关文档信息

  2. 获取库中(qrels_dict)所有相关文档的信息

  3. 进行 P@K评估计算

    在这里插入图片描述
    在这里插入图片描述

  4. 进行 AP 评估计算
    在这里插入图片描述

  5. 进行 MAP 均值评估计算。
    在这里插入图片描述

    在这里插入图片描述


def MAP_eval(qrels_dict, test_dict, k = 100):# MAP是对AP评价结果进行平均,AP基于P(Precision@K)评估AP_result = [] for query in qrels_dict:# 获取相关信息test_result = test_dict[query]              # 检索文档true_list = set(qrels_dict[query].keys())   # 相关文档use_length = min(k, len(test_result))       # 用不超过100条文档计算if use_length <= 0:print('query:', query, '未找到')return []# 声明变量P_result = [] total = 0    the_true = 0  # P@K 评估for doc_id in test_result[0: use_length]:total += 1if doc_id in true_list:# 如果是相关的the_true += 1P_result.append(the_true / total)# AP评估if P_result:AP = np.sum(P_result) / len(true_list)# print('query:', query, '的AP评估结果:', AP)AP_result.append(AP)else:print('query:', query, ' 就没有相关的┭┮﹏┭┮')AP_result.append(0)# MAP就是AP的平均值return np.mean(AP_result)

🐇MRR 评价指标函数

  1. 获取检索到的(test_dict)相关文档信息

  2. 获取库中(qrels_dict)所有相关文档的信息

  3. 计算排序倒数(第一个相关结果的位置倒数)
    在这里插入图片描述

  4. 进行 RR 评估计算
    在这里插入图片描述

  5. 进行 MRR 均值评估计算。
    在这里插入图片描述
    在这里插入图片描述


def MRR_eval(qrels_dict, test_dict, k = 100):# MRR是对RR评价结果进行平均,RR基于排序倒数RR_result = []for query in qrels_dict:# 获取相关信息test_result = test_dict[query]              # 检索文档true_list = set(qrels_dict[query].keys())   # 相关文档use_length = min(k, len(test_result))       # 用不超过100条文档计算if use_length <= 0:print('query:', query, '未找到')return []# 声明变量R_result = []rank = 0# 计算排序倒数for doc_id in test_result[0: use_length]:rank += 1if doc_id in true_list:R_result.append(1 / rank)break# RR评估if R_result:RR = np.sum(R_result)/1.0# print('query:', query, '的RR评估结果:', RR)RR_result.append(RR)else:print('query:', query, ' 就没有相关的┭┮﹏┭┮') RR_result.append(0)# MRR就是RR的平均值return np.mean(RR_result)

🐇NDCG评价指标函数

  1. 获取检索到的(test_dict)相关文档信息
  2. 获取库中(qrels_dict)所有相关文档的gain(也就是下边的rel)信息
  3. 按gain(rel)倒序排列(理想化,用于计算IDCG)
  4. 先计算出 DCGIDCG,二者相除得到NDCG,取均值后返回。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

def NDCG_eval(qrels_dict, test_dict, k = 100):# NDCG@K = DCG@K / IDCG@K# DCG = rel(1) + sum(rel(i)/log(i))# IDCG就是按rel排序之后的DCGNDCG_result = []for query in qrels_dict:# 获取相关信息                                          test_result = test_dict[query]                       # 检索文档true_list = list(qrels_dict[query].values())         # 相关文档的gain列表true_list = sorted(true_list, reverse=True)          # 按gain(rel)倒序排列use_length = min(k, len(test_result),len(true_list)) # 用不超过100条文档计算if use_length <= 0:print('query:', query, '未找到')return []# 声明变量i = 1DCG = 0.0 IDCG = 0.0# 计算DCG和IDCGrel1 = qrels_dict[query].get(test_result[0], 0)DCG += rel1for doc_id in test_result[1: use_length]:i += 1rel = qrels_dict[query].get(doc_id, 0)DCG += rel / math.log(i, 2)IDCG += true_list[i - 2] / math.log(i, 2)NDCG = DCG / IDCG# print('query:', query, '的NDCG评估结果:', NDCG)NDCG_result.append(NDCG)# 取平均值后返回return np.mean(NDCG_result)

🐇调试结果

在这里插入图片描述


参考博客:信息检索实验3- IR Evaluation

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/144169.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

锐捷EG易网关login.php以及其后台cli.php/branch_passw.php RCE漏洞复现 [附POC]

文章目录 锐捷EG易网关login.php以及其后台cli.php/branch_passw.php远程代码执行漏洞复现 [附POC]0x01 前言0x02 漏洞描述0x03 影响版本0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 锐捷EG易网关login.php以及其后台cli.php/branch_passw.php远程代码执行漏洞复…

【Java 进阶篇】JQuery 案例:下拉列表选中条目左右移动,打破选择的边界

在前端的舞台上&#xff0c;下拉列表是常见的用户交互元素&#xff0c;但有时候我们想要更多的交互体验。通过巧妙运用 JQuery&#xff0c;我们可以实现下拉列表中选中条目的左右移动功能&#xff0c;为用户提供更加灵活的选择方式。本篇博客将深入研究 JQuery 中实现这一功能的…

操作系统(二 )| 进程控制 进程状态 进程描述 进程控制 进程同步互斥

文章目录 1 进程和程序区别2 进程状态2.1 进程的5种基本状态2.2 进程状态之间转换2.3 七状态模型 3 进程描述3.1 进程控制块 PCB3.2 进程块组织方式 4 进程控制5 进程同步 互斥5.1 区分进程互斥和同步5.2 核心方案5.3 其他方案方案1 设置锁变量方案2 严格轮转法方案3 Peterson解…

post 和get参数 请求

json参数 post请求格式 RestController public class HelloController { //json参数 post 请求RequestMapping("/jsonParam")public String jsonParam(RequestBody User user){System.out.println(user);return "OK";} } postman 接口测试工具…

服务器数据恢复—服务器发生故障导致数据丢失如何恢复服务器数据?

服务器常见故障&#xff1a; 硬件故障&#xff1a;磁盘、板卡、电源故障等。 软件故障&#xff1a;操作系统崩溃、程序运行错误等。 入侵破坏&#xff1a;加密、删除服务数据等。 不可控力&#xff1a;浸水、火烧、倒塌等。 误操作&#xff1a;格式化、删除、覆盖等。 如何减少…

从零搭建微服务架构:Spring Boot与Nacos完美整合

&#x1f38f;&#xff1a;你只管努力&#xff0c;剩下的交给时间 &#x1f3e0; &#xff1a;小破站 从零搭建微服务架构&#xff1a;Spring Boot与Nacos完美整合 前言第一&#xff1a;服务注册与发现第二&#xff1a;配置中心第三&#xff1a;报错问题解决第四&#xff1a;什…

继承、多态

复习 需求&#xff1a; 编写一个抽象类&#xff1a;职员Employee,其中定义showSalary(int s)抽象方法&#xff1b;编写Employee的子类&#xff0c;分别是销售员Sales和经理Manager,分别在子类中实现对父类抽象方法的重写&#xff0c;并编写测试类Test查看输出结果 package cn.…

某头部通信企业:SDLC+模糊测试,保障数实融合安全发展

某头部通信企业是全球领先的综合通信信息解决方案提供商&#xff0c;为全球电信运营商、政企客户和消费者提供创新的技术与产品解决方案。该企业持续关注核心技术攻关&#xff0c;深入打造系列化标杆项目和价值场景&#xff0c;加强数字化平台的推广应用&#xff0c;加快共建开…

【机器学习基础】多元线性回归(适合初学者的保姆级文章)

&#x1f680;个人主页&#xff1a;为梦而生~ 关注我一起学习吧&#xff01; &#x1f4a1;专栏&#xff1a;机器学习 欢迎订阅&#xff01;后面的内容会越来越有意思~ &#x1f4a1;往期推荐&#xff1a; 【机器学习基础】机器学习入门&#xff08;1&#xff09; 【机器学习基…

FreeSWITCH案例跟踪之一,sip bye发不出去

报故障的说&#xff0c;网关呼叫fs&#xff0c;网关收不到fs的sip bye Wireshark看call-flow, 是这样的&#xff1a; INVITE里面的contact是<sip:172.23.4.109:5060;transporttcp> 于是Wireshark设置过滤条件为ip.addr 172.23.4.109 and tcp.port 5060 fs tcp连网关被…

【前端】使用json-server报错

当我们使用json-server模仿后端接口时需要运行json-server --watch index.json这个命令生成增删改查接口但是可能会报这个错误&#xff0c;如图 这时我们运行 npm i json-server -g命令即可&#xff0c;然后再重新运行json-server --watch index.json就行了

基于SSM的校园家教兼职信息交流平台设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

深入探索 Django Channels

概要 随着 Web 应用的发展&#xff0c;实时功能如即时消息、实时通知等变得越来越重要。Django Channels 是 Django 的一个扩展&#xff0c;它使得在 Django 中构建实时功能变得可能。本文将深入探讨 Django Channels 的核心概念、架构以及如何实现一个实时应用。 1. Django C…

2023亚太杯数学建模思路 - 复盘:光照强度计算的优化模型

文章目录 0 赛题思路1 问题要求2 假设约定3 符号约定4 建立模型5 模型求解6 实现代码 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 问题要求 现在已知一个教室长为15米&#xff0c;宽为12米&…

基于纵横交叉算法优化概率神经网络PNN的分类预测 - 附代码

基于纵横交叉算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于纵横交叉算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于纵横交叉优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神…

2760. 最长奇偶子数组 : 抽丝剥茧,图解双指针做法正确性

题目描述 这是 LeetCode 上的 「2698. 求一个整数的惩罚数」 &#xff0c;难度为 「简单」。 Tag : 「双指针」、「滑动窗口」 给你一个下标从 开始的整数数组 nums 和一个整数 threshold。 请你从 nums 的子数组中找出以下标 l 开头、下标 r 结尾 ( ) 且满足以下条件的 最长子…

ssd202d-logo-cmd_bootlogo分析

cmd_bootlogo.c运行过程 common/autoboot.c:593: disp_logo(0); sprintf(cmd_str, "bootlogo %d 1 0 0 0", logo_id); do_display函数 获取对应结构体,里面有各种参数

ARM 自动资源管理

Java 7 增加了一个新特性&#xff0c;该特性提供了另外一种管理资源的方式&#xff0c;这种方式能自动关闭文件。这个特性有时被称为自动资源管理(Automatic Resource Management, ARM)&#xff0c; 该特性以 try 语句的扩展版为基础。自动资源管理主要用于当不再需要文件&…

Android R.fraction

来源 我是在看Android10原生代码&#xff0c;绘制状态栏蓝牙电量相关类中第一次看到R.fraction的&#xff0c;如类BatteryMeterDrawable <fraction name"battery_button_height_fraction">10%</fraction> mButtonHeightFraction context.getResources(…

虹科方案 | 从概念到生产的自动驾驶软件在环(SiL)测试解决方案

来源&#xff1a;雅名特自动驾驶 虹科方案 | 从概念到生产的自动驾驶软件在环&#xff08;SiL&#xff09;测试解决方案 自动驾驶软件在环&#xff08;SiL&#xff09;测试解决方案 自动驾驶软件在环&#xff08;SiL&#xff09;测试解决方案能够研究和验证高历程实验和恶劣驾…