深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天

文章目录

  • 前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
      • 我的环境:
    • 2. 导入数据
    • 3.归一化
    • 4.可视化
    • 5.调整图片格式
  • 二、构建CNN网络模型
  • 三、编译模型
  • 四、训练模型
  • 五、预测
  • 六、知识点详解
    • 1. MNIST手写数字数据集介绍
    • 2. 神经网络程序说明
    • 3. 网络结构说明

前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")

2. 导入数据

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()

3.归一化

# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0, test_images / 255.0train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

4.可视化

plt.figure(figsize=(20,10))
for i in range(20):plt.subplot(5,10,i+1)plt.xticks([])plt.yticks([])plt.grid(False)plt.imshow(train_images[i], cmap=plt.cm.binary)plt.xlabel(train_labels[i])
plt.show()

在这里插入图片描述

5.调整图片格式

#调整数据到我们需要的格式
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))# train_images, test_images = train_images / 255.0, test_images / 255.0train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

二、构建CNN网络模型

model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Flatten(),layers.Dense(64, activation='relu'),layers.Dense(10)
])model.summary()
Model: "sequential"
_________________________________________________________________Layer (type)                Output Shape              Param #   
=================================================================conv2d (Conv2D)             (None, 26, 26, 32)        320       max_pooling2d (MaxPooling2D  (None, 13, 13, 32)       0         )                                                               conv2d_1 (Conv2D)           (None, 11, 11, 64)        18496     max_pooling2d_1 (MaxPooling  (None, 5, 5, 64)         0         2D)                                                             flatten (Flatten)           (None, 1600)              0         dense (Dense)               (None, 64)                102464    dense_1 (Dense)             (None, 10)                650       =================================================================
Total params: 121,930
Trainable params: 121,930
Non-trainable params: 0
_________________________________________________________________

三、编译模型

model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])

四、训练模型

history = model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))
Epoch 1/10
1875/1875 [==============================] - 15s 8ms/step - loss: 0.1429 - accuracy: 0.9562 - val_loss: 0.0550 - val_accuracy: 0.9803
Epoch 2/10
1875/1875 [==============================] - 14s 7ms/step - loss: 0.0460 - accuracy: 0.9856 - val_loss: 0.0352 - val_accuracy: 0.9883
Epoch 3/10
1875/1875 [==============================] - 13s 7ms/step - loss: 0.0312 - accuracy: 0.9904 - val_loss: 0.0371 - val_accuracy: 0.9880
Epoch 4/10
1875/1875 [==============================] - 14s 7ms/step - loss: 0.0234 - accuracy: 0.9925 - val_loss: 0.0330 - val_accuracy: 0.9900
Epoch 5/10
1875/1875 [==============================] - 14s 8ms/step - loss: 0.0176 - accuracy: 0.9944 - val_loss: 0.0311 - val_accuracy: 0.9904
Epoch 6/10
1875/1875 [==============================] - 16s 9ms/step - loss: 0.0136 - accuracy: 0.9954 - val_loss: 0.0300 - val_accuracy: 0.9911
Epoch 7/10
1875/1875 [==============================] - 14s 8ms/step - loss: 0.0109 - accuracy: 0.9964 - val_loss: 0.0328 - val_accuracy: 0.9909
Epoch 8/10
1875/1875 [==============================] - 14s 7ms/step - loss: 0.0097 - accuracy: 0.9969 - val_loss: 0.0340 - val_accuracy: 0.9903
Epoch 9/10
1875/1875 [==============================] - 15s 8ms/step - loss: 0.0078 - accuracy: 0.9974 - val_loss: 0.0499 - val_accuracy: 0.9879
Epoch 10/10
1875/1875 [==============================] - 13s 7ms/step - loss: 0.0078 - accuracy: 0.9976 - val_loss: 0.0350 - val_accuracy: 0.9902

五、预测

通过下面的网络结构我们可以简单理解为,输入一张图片,将会得到一组数,这组代表这张图片上的数字为0~9中每一个数字的几率,out数字越大可能性越大。
在这里插入图片描述

plt.imshow(test_images[1])

在这里插入图片描述

输出测试集中第一张图片的预测结果

pre = model.predict(test_images)
pre[1]
313/313 [==============================] - 1s 2ms/step
array([  3.3290668 ,   0.29532072,  21.943724  ,  -7.09336   ,-15.3133955 , -28.765621  ,  -1.8459738 ,  -5.761892  ,-2.966585  , -19.222878  ], dtype=float32)

六、知识点详解

本文使用的是最简单的CNN模型- -LeNet-5,如果是第一次接触深度学习的话,可以先试着把代码跑通,然后再尝试去理解其中的代码。

1. MNIST手写数字数据集介绍

MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一。数据集中的数字图片是由250个不同职业的人纯手写绘制,数据集获取的网址为:http://yann.lecun.com/exdb/mnist/ (下载后需解压)。我们一般会采用(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()这行代码直接调用,这样就比较简单

MNIST手写数字数据集中包含了70000张图片,其中60000张为训练数据,10000为测试数据,70000张图片均是28*28,数据集样本如下:

在这里插入图片描述

如果我们把每一张图片中的像素转换为向量,则得到长度为28*28=784的向量。因此我们可以把训练集看成是一个[60000,784]的张量,第一个维度表示图片的索引,第二个维度表示每张图片中的像素点。而图片里的每个像素点的值介于0-1之间。

在这里插入图片描述

2. 神经网络程序说明

神经网络程序可以简单概括如下:
在这里插入图片描述

3. 网络结构说明

在这里插入图片描述

各层的作用

  • 输入层:用于将数据输入到训练网络
  • 卷积层:使用卷积核提取图片特征
  • 池化层:进行下采样,用更高层的抽象表示图像特征
  • Flatten层:将多维的输入一维化,常用在卷积层到全连接层的过渡
  • 全连接层:起到“特征提取器”的作用

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/143945.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

甲方与三方渗透团队的协作注意点

文章目录 以下是优化后的内容: 作为甲方安全团队主导的渗透攻击,以下几点需要注意: 预备充分 与测试团队协调,提供乙方攻击所需的必要资源,以及具有甲方特色的资源。例如,如果认为自己的权限系统需要重点评…

ChatGLM3-6B:新一代开源双语对话语言模型,流畅对话与低部署门槛再升级

项目设计集合(人工智能方向):助力新人快速实战掌握技能、自主完成项目设计升级,提升自身的硬实力(不仅限NLP、知识图谱、计算机视觉等领域):汇总有意义的项目设计集合,助力新人快速实…

Docker Compose详细教程(从入门到放弃)

对于现代应用来说,大多都是通过很多的微服务互相协同组成的一个完整应用。例如, 订单管理、用户管理、品类管理、缓存服务、数据库服务等,它们构成了一个电商平台的应 用。而部署和管理大量的服务容器是一件非常繁琐的事情。而 Docker Compos…

电机应用-控制系统、PID

控制系统 对生产中某些关键性参数进行自动控制,使它们在受到外界干扰(扰动)的影响而偏离正常状态时,能够被自动地调节而回到工艺所要求地数值范围内。 自动控制系统分为:开环、闭环。 闭环自动控制系统原理 闭环控制是…

wpf devexpress post 更改数据库

这个教程示范如何使用GridControl编辑数据,和保存更改到数据库。这个教程基于前一个篇。 Items Source Wizard 当 CRUD (Create, Read, Update, Delete) 启动选项时添加Post data功能 Items Source Wizard 生成如下代码: 1、设置 TableView.ShowUpdat…

数据库概率 期末复习

第一章 绪论 概述 数据 定义:描述事物的符号记录 地位:数据库中存储的基本对象 数据的语义:数据的含义,数据与其语义是不可分的 数据库 定义:长期储存在计算机内、有组织的、可共享的大量数据的集合 特点&…

Android 10.0 framework层设置后台运行app进程最大数功能实现

1. 前言 在10.0的定制开发中,在系统中,对于后台运行的app过多的时候,会比较耗内存,导致系统运行有可能会卡顿,所以在系统优化的 过程中,会限制后台app进程运行的数量,来保证系统流畅不影响体验,所以需要分析下系统中关于限制app进程的相关源码来实现 功能 2.framewo…

php实现选择排序法

选择排序法是一种简单的排序算法&#xff0c;其基本思想是每次从未排序的部分中选择最小&#xff08;或最大&#xff09;的元素&#xff0c;然后放到已排序部分的末尾。 以下是用PHP实现选择排序法的代码示例&#xff1a; <?php function selectionSort($arr) {$n count…

使用GPT-4训练数据微调GPT-3.5 RAG管道

原文&#xff1a;使用GPT-4训练数据微调GPT-3.5 RAG管道 - 知乎 OpenAI在2023年8月22日宣布&#xff0c;现在可以对GPT-3.5 Turbo进行微调了。也就是说&#xff0c;我们可以自定义自己的模型了。然后LlamaIndex就发布了0.8.7版本&#xff0c;集成了微调OpenAI gpt-3.5 turbo的…

嵌入式linux--sysfs文件系统以及操作GPIO

sysfs文件系统 在Linux系统中&#xff0c;/sys路径是一个特殊的虚拟文件系统&#xff08;Virtual File System&#xff09;&#xff0c;用于提供对内核和设备的运行时信息的访问。它是sysfs文件系统的挂载点&#xff0c;提供了一种以文件和目录形式表示系统设备、总线、驱动程…

C#,数值计算——插值和外推,BaryRat_interp的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// 重心有理插值对象 /// Barycentric rational interpolation object. /// After constructing the object, /// call interp for interpolated values. /// Note t…

基于python+django的美食餐厅点餐订餐网站

运行环境 开发语言&#xff1a;Python python框架&#xff1a;django 软件版本&#xff1a;python3.7 数据库&#xff1a;mysql 5.7 数据库工具&#xff1a;Navicat11 开发软件&#xff1a;PyCharm/vscode 前端框架:vue.js 项目介绍 本论文主要论述了如何使用python语言开发…

队列的实现---超详细

队列的实现—超详细 文章目录 队列的实现---超详细一、队列的模型二、代码实现以及测试用例①队列初始化②入队③出队④输出队头⑤输出队尾⑥判断队列是否为空⑦队列的长度⑧队列的销毁⑨测试用例 一、队列的模型 队列&#xff1a;只允许在一端进行插入数据操作&#xff0c;在…

【计算思维】少儿编程蓝桥杯青少组计算思维题考试真题及解析B

STEMA考试-计算思维-U8级(样题) 1.浩浩的左⼿边是&#xff08; &#xff09;。 A.兰兰 B.⻉⻉ C.⻘⻘ D.浩浩 2.2时30分&#xff0c;钟⾯上时针和分针形成的⻆是什么⻆&#xff1f;&#xff08; &#xff09; A.钝⻆ B.锐⻆ C.直⻆ D.平⻆ 3.下⾯是⼀年级同学最喜欢的《⻄游记》…

Oneid方案

一、前文 用户画像的前提是标识出用户&#xff0c;存在以下场景&#xff1a;不同业务系统对同一个人的标识&#xff0c;匿名用户行为的行为归因&#xff1b;本文提供多种解决方案&#xff0c;提供大家思考。 二、方案矩阵 三、其他 相关连接&#xff1a; 如何通过图算法能力获…

Web安全之PHP的伪协议漏洞利用,以及伪协议漏洞防护方法

一、背景 今天介绍一个比较冷门的知识&#xff0c;只有在PHP环境中存在的伪协议漏洞&#xff0c;那么什么是PHP伪协议呢&#xff1f;PHP伪协议事实上就是支持的协议与封装协议。可用于类似 fopen()、 copy()、 file_exists() 和 filesize() 的文件系统函数。 除了这些封装协议…

asp.net数字档案管理系统VS开发sqlserver数据库web结构c#编程web网页设计

一、源码特点 asp.net 数字档案管理系统 是一套完善的web设计管理系统&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为vs2010&#xff0c;数据库为sqlserver2008&#xff0c;使用c#语 言开发。 asp.net数字档案系统1 应用技…

c语言从入门到实战——数组指针与函数指针

数组指针与函数指针 前言1. 字符指针变量2. 数组指针变量2.1 数组指针变量是什么&#xff1f;2.2 数组指针变量怎么初始化? 3. 二维数组传参的本质4. 函数指针变量4.1 函数指针变量的创建4.2 函数指针变量的使用4.3 两段有趣的代码4.3.1 typedef关键字 5. 函数指针数组6. 转移…

electronjs入门-编辑器应用程序

我们将在Electron中创建一个新项目&#xff0c;如我们在第1章中所示&#xff0c;名为“编辑器”&#xff0c;我们将在下一章中使用它来创建编辑器&#xff1b;在index.js中&#xff0c;这是我们的主要过程&#xff1b;请记住为Electron软件包放置必要的依赖项&#xff1a; npm…

vue中一个页面引入多个相同组件重复请求的问题?

⚠️&#xff01;&#xff01;&#xff01;此内容需要了解一下内容&#xff01;&#xff01;&#xff01; 1、会使用promise&#xff1f;&#xff1f;&#xff1f; 2、 promise跟 async 的区别&#xff1f;&#xff1f;&#xff1f; async 会终止后面的执行&#xff0c;后续…