【Python】上市公司数据进行经典OLS回归实操

  • 一、题目
  • 二、数据合并、清洗、描述性统计
    • 1、数据获取
    • 2、数据合并
    • 3、选择董监高薪酬作为解释变量的理论逻辑分析
  • 三、多元回归模型的参数估计、结果展示与分析
    • 1、描述性统计分析
    • 2、剔除金融类上市公司
    • 3、对所有变量进行1%缩尾处理
    • 4、0-1标准化,所有解释变量
    • 5、绘制热力图
    • 6、逐步加入关键解释变量
    • 7、制作显著性表格
    • 8、经典logit回归

  • 首先,一件非常崩溃的事情,昨天晚上使用jupyter notebook跑的数据、代码全部没了,非常难受。
  • 不过好在自己足够坚强 ,反思了一下,当时要关闭的时候显示未保存,但是明明自己保存了,所以还是自己的问题。其次,我懂得了以后使用jupyter notebook 会更加小心谨慎。
  • 过一段重装一下,看看是什么原因导致无法正常保存。

一、题目

在这里插入图片描述

  • 四个文件的资料已经放在Q群里面了

二、数据合并、清洗、描述性统计

1、数据获取

  • 从CSMAR【国泰安金融数据库】数据库下载上市公司基本信息、个股日度收益率、公司董监高等高管个人资料(含个人特征、兼任信息、总经理变更等)、关联交易or股权质押or交叉持股情况、财务指标(包括比率结构、相对价值指标、盈利能力指标)
  • 当然,我实际用到的数据没有那么多,就4个表格。

df1数据如下:
在这里插入图片描述
df2数据如下:
在这里插入图片描述

df3数据如下:
在这里插入图片描述

df4数据如下:
在这里插入图片描述

  • df4的数据我只使用了报告期薪酬这列数据,与上面的三张表格的部分数据进行合并。
  • 此外发现统计截止日期都是同一个日期,因此需要进行处理。

2、数据合并

from scipy.stats.mstats import winsorize
import statsmodels.api as sma
from sklearn.preprocessing import MinMaxScaler # min-max 标准化
import pandas as pd
import numpy as np
df1=pd.read_excel("比例结构.xlsx")
df2=pd.read_excel("相对价值指标.xlsx")
df3=pd.read_excel("盈利能力.xlsx")
df4=pd.read_excel("副本董监高个人特征文件.xlsx")
# 删除'报告期报酬总额'列为空的行
df4 = df4[df4['报告期报酬总额']>0]
import pandas as pd# 假设df1, df2, df3已经被创建并且包含了相应的列# 首先,合并df1和df2
data1 = pd.merge(df1[['Stkcd', '股票简称', '统计截止日期', '流动资产比率', '现金资产比率', '固定资产比率', '无形资产比率', '有形资产比率', '资产负债率','归属于母公司净利润占比', '主营业务利润占比']], df2[['Stkcd', '股票简称', '统计截止日期', '市盈率(PE)1', '市净率母公司(PB)', '托宾Q值B', '账面市值比A']], on=['Stkcd', '股票简称', '统计截止日期'], how='inner')# 然后,将df4与df3合并
data1 = pd.merge(data1, df3[['Stkcd', '股票简称', '统计截止日期', '销售费用率', '管理费用率', '总资产净利润率(ROA)A']], on=['Stkcd', '股票简称', '统计截止日期'], how='inner')# 现在df4包含了所有需要的列
# 缺失值直接去除
data1=data1.dropna()
data1

在这里插入图片描述

# 对df4的数据进行处理,使用groupby和agg进行聚合操作
df44 = df4.groupby(['Stkcd', '统计截止日期']).agg({'报告期报酬总额': ['sum', 'count']})# 重命名列名
df44.columns = ['总和', '计数']# 计算均值
df44['均值'] = df44['总和'] / df44['计数']# 重置索引以获得所需的结果
df44.reset_index(inplace=True)
df44 = pd.DataFrame(df44)
df44

在这里插入图片描述

# 然后,将df4与df3合并
data1 = pd.merge(data1, df44[['Stkcd', '均值']], on=['Stkcd'], how='inner')
data1

在这里插入图片描述

data1.rename(columns={'均值': '董监高报告期报酬均值'}, inplace=True)
data1.columns
data1.isnull().sum()

在这里插入图片描述
被解释变量:

  • 总资产净利润率(ROA)A :指的是企业总资产的净利润率,是一种衡量公司经营效率的财务指标。

解释变量:

  • 流动资产比率:流动资产比率是指企业流动资产与总资产的比例,反映了企业流动性的程度。

  • 现金资产比率:现金资产比率是指企业现金资产与总资产的比例,反映了企业现金储备的情况。

  • 固定资产比率:固定资产比率是指企业固定资产与总资产的比例,反映了企业固定资产在总资产中的占比。

  • 有形资产比率:有形资产比率是指企业有形资产与总资产的比例,有形资产指的是可以触摸和看到的资产,如土地、建筑物等。

  • 无形资产比率:无形资产比率是指企业无形资产与总资产的比例,无形资产指的是无形的资产,如专利、商标等。

  • 资产负债率:资产负债率是指企业负债总额与总资产的比例,反映了企业负债的程度。

  • 管理费用率:管理费用率是指企业管理费用与营业收入的比例,反映了企业管理费用在营业收入中的占比。

  • 销售费用率:销售费用率是指企业销售费用与营业收入的比例,反映了企业销售费用在营业收入中的占比。

  • 归属于母公司净利润占比:归属于母公司净利润占比是指企业归属于母公司的净利润与净利润的比例,反映了母公司对净利润的占有程度。

  • 主营业务利润占比:主营业务利润占比是指企业主营业务利润与净利润的比例,反映了主营业务对净利润的贡献程度。

  • 董监高报告期报酬均值:董监高报告期报酬均值是指企业董事、监事和高级管理人员在报告期内的平均报酬水平。

3、选择董监高薪酬作为解释变量的理论逻辑分析

  • 吴育辉(2010)以 2004—2008 年我国全部 A 股上研究对象,发现高管薪酬与公司 ROA 显著正相关。张燕红(2016)和蒋泽芳(2019)的研究结果也证明高管薪酬激励对企业经营业绩存在显著正向影响。
  • [1] 吴育辉,吴世农.高管薪酬:激励还是自利[J].会计研究,2010(11):40-48+96-97.
  • [2]张燕红.高管薪酬激励对企业绩效的影响[J].经济问题,2016(06):116-120.
  • [3]蒋泽芳,陈祖英.高管薪酬、股权集中度与企业绩效[J].财会通讯,2019(18):64-68.

三、多元回归模型的参数估计、结果展示与分析

1、描述性统计分析

xVars =['流动资产比率', '现金资产比率', '固定资产比率', '有形资产比率', '无形资产比率','资产负债率', '管理费用率', '销售费用率', '归属于母公司净利润占比', '主营业务利润占比', '董监高报告期报酬均值']
yVar = ['总资产净利润率(ROA)A']
xyVars = yVar + xVars
perct = [0.005,0.01,0.02,0.03, 0.04, 0.05, 0.1,0.15,0.25]
perct += [1-a for a in perct]
perct += [0.5]
sorted(perct)
data1[xVars].describe(percentiles = perct)

在这里插入图片描述
结合上面的描述性统计结果,可以看出:

  • 流动资产比率:流动资产比率最小值为0.008334,最大值为0.996918,中位数为0.639045。
  • 现金资产比率:现金资产比率最小值为-0.123399,最大值为0.865536,中位数为0.139831。
  • 固定资产比率:固定资产比率最小值为0.000025,最大值为0.907087,中位数为0.144974。
  • 有形资产比率:有形资产比率最小值为0.061408,最大值为1,中位数为0.964118。
  • 无形资产比率:无形资产比率最小值为0,最大值为0.938592,中位数为0.0277。
  • 资产负债率:资产负债率最小值为0.013898,最大值为1.00818,中位数为0.365849。最大值接近1可能表示某些公司存在高度杠杆,这可能是金融机构的特点。因此,剔除上市公司当中的金融机构以减小金融机构对分析的影响。
  • 管理费用率:管理费用率最小值为-0.002573,最大值为412041.4711,中位数为0.056456。
  • 销售费用率:销售费用率最小值为-0.07824,最大值为160.163763,中位数为0.026863。
  • 归属于母公司净利润占比:归属于母公司净利润占比最小值为-49.539184,最大值为217.579751,中位数为1。
  • 主营业务利润占比:主营业务利润占比最小值为-1837.701639,最大值为1860.04866,中位数为2.173424。
  • 董监高报告期报酬均值:董监高报告期报酬均值最小值为4.46E+01,最大值为7734582.353,中位数为4.89E+05。

2、剔除金融类上市公司

data1 = data1[~data1['股票简称'].str.contains('金融')]
data1

在这里插入图片描述

  • 注:其实就减少了几条数据而已

3、对所有变量进行1%缩尾处理

cols_to_winsorize = ['流动资产比率', '现金资产比率', '固定资产比率', '有形资产比率', '无形资产比率','资产负债率', '管理费用率', '销售费用率', '归属于母公司净利润占比', '主营业务利润占比', '董监高报告期报酬均值']# 对每个变量进行缩尾处理
for col in cols_to_winsorize:data1[col] = winsorize(data1[col], limits=(0.01, 0.01))
data1[xVars].describe(percentiles = perct)

在这里插入图片描述

4、0-1标准化,所有解释变量

data1[xVars] = MinMaxScaler().fit_transform(data1[xVars])
data1[xVars].describe()

在这里插入图片描述

5、绘制热力图

import matplotlib.pyplot as plt
import seaborn as sns # 画热度图
plt.rcParams["font.sans-serif"] = ["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"] = False #该语句解决图像中的“-”负号的乱码问题
a = data1[xVars].corr()
plt.figure(figsize=(10, 8))  # 调整图的大小为10x8
sns.heatmap(a, vmin=-1, vmax=1, annot=True, fmt=".2f", cmap="coolwarm", annot_kws={"size": 12, "color": "red"})
plt.show()

在这里插入图片描述
从解释变量之间的相关性分析可以看出:解释变量中(正/负)高相关性的变量需要从解释变量剔除

  • “有形资产比率”与“无形资产比率”的相关系数为-0.77,考虑保留“无形资产比率”,同时删除“有形资产比率”
  • “流动资产比率”与“固定资产比率”的相关系数为-0.67,考虑保留“流动形资产比率”,同时删除“固定资产比率”
xVars =['流动资产比率', '现金资产比率',  '无形资产比率','资产负债率', '管理费用率', '销售费用率', '归属于母公司净利润占比', '主营业务利润占比', '董监高报告期报酬均值']
xd = data1[xVars]
xdcons = sma.add_constant(xd)
yd = data1[yVar]
# 参数估计
model = sma.OLS(yd, xdcons).fit()
model.summary2().tables[1]

在这里插入图片描述

根据给出的回归系数和统计显著性水平,对每个解释变量进行分析:

  • 流动资产比率(Coefficient: -0.004911, P-value: 0.000554):流动资产比率的增加与因变量的减少呈负相关关系,且统计上显著。

  • 现金资产比率(Coefficient: 0.024404, P-value: 3.653465e-51):现金资产比率的增加与因变量的增加呈正相关关系,且统计上显著。

  • 无形资产比率(Coefficient: 0.005387, P-value: 0.011765):无形资产比率的增加与因变量的增加呈正相关关系,但统计上显著性较低。

  • 资产负债率(Coefficient: -0.040177, P-value: 5.507828e-201):资产负债率的增加与因变量的减少呈负相关关系,且统计上显著。

  • 管理费用率(Coefficient: -0.009757, P-value: 7.784131e-05):管理费用率的增加与因变量的减少呈负相关关系,且统计上显著。

  • 销售费用率(Coefficient: -0.026514, P-value: 2.484850e-71):销售费用率的增加与因变量的减少呈负相关关系,且统计上显著。

  • 归属于母公司净利润占比(Coefficient: 0.004800, P-value: 0.056812):归属于母公司净利润占比的增加与因变量的增加呈正相关关系,但统计上显著性较低。

  • 主营业务利润占比(Coefficient: -0.027229, P-value: 1.294914e-25):主营业务利润占比的增加与因变量的减少呈负相关关系,且统计上显著。

  • 董监高报告期报酬均值(Coefficient: 0.046787, P-value: 1.142120e-150):董监高报告期报酬均值的增加与因变量的增加呈正相关关系,且统计上显著。

  • 结论:流动资产比率、资产负债率、管理费用率、销售费用率和主营业务利润占比对因变量有显著影响,而现金资产比率、无形资产比率、归属于母公司净利润占比和董监高报告期报酬均值对因变量的影响可能较弱。

model.summary()

在这里插入图片描述

6、逐步加入关键解释变量

# 需要逐步加入的变量
xStepVars = ['流动资产比率', '现金资产比率', '无形资产比率', '管理费用率', '销售费用率', '归属于母公司净利润占比', '主营业务利润占比', '董监高报告期报酬均值']# 始终保留的变量(控制变量)
x0Vars = ['资产负债率']sts = ['Coef.', 'Std.Err.', 'P>|t|']
dst = ['Adj.$R^2$', 'AIC', 'BIC','Log-Likelihood']
step_res = pd.DataFrame(columns = pd.MultiIndex.from_product([xStepVars + ['整体回归'], sts]), # 最后加上一列,全部变量的整体回归index = xVars + dst )
for xsv in xStepVars:xns = [xsv] +  x0Varsres = sma.OLS(yd, xdcons[xns]).fit()t_res = res.summary2().tables[1]t_res = t_res[sts]step_res[xsv] = t_res# 取出诊断统计量,放在 Coef. 列t_res = res.summary2().tables[0] for i in range(len(dst)):step_res[xsv, 'Coef.'][dst[i]] = t_res.iloc[i,3]# print(dst[i], ' = ', t_res.iloc[i + 1,3], '填充后 ', step_res[xsv, 'Coef.'][dst[i]])# 全部变量的整体回归结果
res = sma.OLS(yd, xdcons[xStepVars + x0Vars]).fit()
t_res = res.summary2().tables[1] # 取出系数估计结果
step_res['整体回归'] = t_res[sts] # 自动按照 index 匹配赋值# 取出诊断统计量,放在 Coef. 列
t_res = res.summary2().tables[0] 
for i in range(len(dst)):step_res['整体回归', 'Coef.'][dst[i]] = t_res.iloc[i,3]
step_res

在这里插入图片描述

7、制作显著性表格

# 制作显著性表格
df = step_res
rows = df.indexdfres = pd.DataFrame(index = rows, columns = xStepVars + ['整体回归'])for xsv in xStepVars + ['整体回归']:coef = df[xsv].astype(float)['Coef.'].map(lambda x:  '' if np.isnan(x) else ('%.3f') % x )pvs = df[xsv]['P>|t|'].map(lambda x: '***' if x<=0.01 else '**' if x<=0.05 else '*' if x<=0.1 else '')dfres[xsv] = coef + pvs
dfres.loc['Adj.$R^2$',:] = dfres.loc['Adj.$R^2$',:].map(lambda x: '' if np.isnan(float(x)) else ('%.3f%%') % (float(x)*100) )    
dfres

在这里插入图片描述
由上述显著性表格可知:

  • 流动资产比率:流动资产比率与整体回归呈显著正相关。

  • 现金资产比率:现金资产比率与整体回归呈显著正相关。

  • 无形资产比率:无形资产比率与整体回归呈显著正相关。

  • 资产负债率:资产负债率与整体回归呈显著负相关。

  • 管理费用率:管理费用率与整体回归呈显著负相关。

  • 销售费用率:销售费用率与整体回归呈显著负相关。

  • 归属于母公司净利润占比:归属于母公司净利润占比与整体回归呈显著正相关。

  • 主营业务利润占比:主营业务利润占比与整体回归呈显著正相关。

  • 董监高报告期报酬均值:董监高报告期报酬均值与整体回归呈显著正相关。

8、经典logit回归

# 将因变量归一化
yd = MinMaxScaler().fit_transform(yd)
import statsmodels.api as sma# 将自变量和因变量赋值给Xbs和ybs
Xbs = xdcons[xStepVars + x0Vars]
ybs = yd# 为自变量添加常数列
Xbs_cons = sma.add_constant(Xbs)# 创建logit回归模型并拟合
lr = sma.Logit(ybs, Xbs_cons)
logit_res = lr.fit(method='lbfgs', maxiter=500)# 打印logit回归结果
logit_res.summary()

在这里插入图片描述
描述:

  • No. Observations: 25885 - 观测样本的数量是25885。
  • Model: Logit - 使用的模型是逻辑回归模型。
  • Df Residuals: 25875 - 残差的自由度是25875。
  • Method: MLE - 使用的估计方法是最大似然估计。
  • Df Model: 9 - 模型的自由度是9,表示有9个自变量。
  • Pseudo R-squ.: -299.0 - 伪R平方值为-299.0,表示模型拟合效果较差。 Time: 11:28:05 - 模型拟合的时间是上午11:28:05。
  • Log-Likelihood: -10041. - 对数似然值为-10041.,表示模型的对数似然函数值。
  • converged: False - 模型是否收敛,False表示模型未收敛。
  • LL-Null: -33.464 - 空模型的对数似然值为-33.464。
  • Covariance Type: nonrobust - 协方差类型为非鲁棒性。
  • LLR p-value: 1.000 - 对数似然比检验的p值为1.000,表示模型的拟合效果不显著。
lr = sma.Logit(ybs, Xbs_cons)
# logit_res = lr.fit(method = 'lbfgs', maxiter = 500)
logit_res = lr.fit_regularized(method = 'l1', maxiter = 500, alpha = 1, trim_mode = 'size')
logit_res.summary()
res = logit_res.summary2().tables[1]
logit_res.summary2().tables[0]

在这里插入图片描述

round(res.loc[xVars,:],4)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/142733.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【CASS精品教程】打开cass提示base.dcl未找到文件的解决办法

打开cass 7.1时提示base.dcl未找到文件的解决办法。 文章目录 一、问题描述二、解决办法 一、问题描述 系统上安装了cad2006cass7.1&#xff0c;cass软件可以正常打开&#xff0c;但是在使用屏幕菜单绘制地图时&#xff0c;选择一个工具&#xff0c;提示base.dcl未找到文件&am…

Databend 与海外某电信签约:共创海外电信数据仓库新纪元

为什么选择 Databend 海外某电信面临的主要挑战是随着业务量的增加&#xff0c;传统的 Clickhouse Hive 方案在数据存储和处理上开始显露不足。 原来的大数据分析采用的 Clickhouse Hive 方案进行离线的实时报表。但随着业务量的上升后&#xff0c;Hive的数据存储压力变大&…

正点原子嵌入式linux驱动开发——Linux IIO驱动

工业场合里面也有大量的模拟量和数字量之间的转换&#xff0c;也就是常说的ADC和DAC。而且随着手机、物联网、工业物联网和可穿戴设备的爆发&#xff0c;传感器的需求只持续增强。比如手机或者手环里面的加速度计、光传感器、陀螺仪、气压计、磁力计等&#xff0c;这些传感器本…

Hadoop3.3.4分布式安装

安装前提&#xff1a;已经配置好java环境&#xff0c;所有机器之间ssh的免密登录。 注意&#xff1a;下文中的flinkv1、flinkv2、flinkv3是三台服务器的别名 1.集群部署规划 注意&#xff1a;NameNode和SecondaryNameNode不要安装在同一台服务器 注意&#xff1a;ResourceMan…

nginx四层tcp负载均衡及主备、四层udp负载均衡及主备、7层http负载均衡及主备配置(wndows系统主备、负载均衡)

准备工作 服务器上安装、配置网络负载平衡管理器 windows服务器热备、负载均衡配置-CSDN博客 在windows服务器上安装vmware17 win10 上安装vmware17-CSDN博客 在windows上利用vmware17 搭建centos7 mini版 在windows上利用vmware17 搭建centos7 mini版本服务器-CSDN博客 …

225.用队列实现栈(LeetCode)

思路 思路&#xff1a;用两个队列实现栈后进先出的特性 &#xff0c;两个队列为空时&#xff0c;先将数据都导向其中一个队列。 当要模拟出栈时&#xff0c;将前面的元素都导入另一个空队列&#xff0c;再将最后一个元素移出队列 实现 实现&#xff1a; 因为C语言没有库可以…

中睿天下Coremail | 2023年Q3企业邮箱安全态势观察报告

10月25日&#xff0c;北京中睿天下信息技术有限公司联合Coremail邮件安全发布《2023年第三季度企业邮箱安全性研究报告》。2023年第三季度企业邮箱安全呈现出何种态势&#xff1f;作为邮箱管理员&#xff0c;我们又该如何做好防护&#xff1f; 以下为精华版阅读&#xff0c;如需…

景联文科技:驾驭数据浪潮,赋能AI产业——全球领先的数据标注解决方案供应商

根据IDC相关数据统计&#xff0c;全球数据量正在经历爆炸式增长&#xff0c;预计将从2016年的16.1ZB猛增至2025年的163ZB&#xff0c;其中大部分是非结构化数据&#xff0c;被直接利用&#xff0c;必须通过数据标注转化为AI可识别的格式&#xff0c;才能最大限度地发挥其应用价…

arcgis--浮点型栅格数据转整型

利用【Spatial Analyst工具】-【数学】-【转为整型】工具&#xff0c;将浮点型数据转为整型。如下&#xff1a; 【转为整型】对话框参数设计如下&#xff1a; 转换结果如下&#xff1a;

详解 KEIL C51 软件的使用·设置工程·编绎与连接程序

详解 KEIL C51 软件的使用建立工程-CSDN博客 2. 设置工程 (1)在图 2-15 的画面中点击 会弹出如图 2-16 的对话框.其中有 10 个选择页.选择“Target” 项,也就是图 2-16 的画面. 图 2-16 在图 2-16 中,箭头所指的是晶振的频率值,默认是所选单片机最高的可用频率值.该设置值与单…

uniapp运行到安卓模拟器一直在“同步手机端程序文件完成“界面解决办法

如果你是用的模拟器是android studio创建的模拟器&#xff0c;那么你需要新创建一个android11 x86架构的模拟器&#xff1a; 创建完成后&#xff0c;启动模拟器&#xff1a; 然后在hbuilder中重新运行到这个模拟器就可以了&#xff1a; 运行结果&#xff1a; 如果你是用安…

代码随想录Day45 动态规划13 LeetCode T1143最长公共子序列 T1135 不相交的线 T53最大子数组和

LeetCode T1143 最长公共子序列 题目链接:1143. 最长公共子序列 - 力扣&#xff08;LeetCode&#xff09; 题目思路: 动规五部曲分析 1.确定dp数组的含义 这里dp数组的含义是结尾分别为i-1,j-1的text1和text2的最长公共子序列长度 至于为什么是i-1,j-1我之前已经说过了,这里再…

网络运维Day16

文章目录 Docker简介什么是容器命名空间&#xff1a; Docker 的优缺点 Docker安装Docker镜像管理什么是镜像镜像管理 Docker容器管理运行容器容器启动、停止、重启拷贝文件进入容器容器与应用 DockerfileDockerfile 语法案例 总结 Docker简介 什么是容器 容器是用来装东西的&a…

CSS特效010:文字颜色渐变的流光效果

查看专栏目录 本专栏记录的是经常使用的CSS示例与技巧&#xff0c;主要包含CSS布局&#xff0c;CSS特效&#xff0c;CSS花边信息三部分内容。其中CSS布局主要是列出一些常用的CSS布局信息点&#xff0c;CSS特效主要是一些动画示例&#xff0c;CSS花边是描述了一些CSS相关的库、…

爱上C语言:整型和浮点型在内存中的存储(进制转换,原码,反码,补码以及大小端)

&#x1f680; 作者&#xff1a;阿辉不一般 &#x1f680; 你说呢&#xff1a;生活本来沉闷&#xff0c;但跑起来就有风 &#x1f680; 专栏&#xff1a;爱上C语言 &#x1f680;作图工具&#xff1a;draw.io(免费开源的作图网站) 如果觉得文章对你有帮助的话&#xff0c;还请…

揭秘Vue中的nextTick:异步更新队列背后的技术原理大揭秘!

&#x1f3ac; 江城开朗的豌豆&#xff1a;个人主页 &#x1f525; 个人专栏 :《 VUE 》 《 javaScript 》 &#x1f4dd; 个人网站 :《 江城开朗的豌豆&#x1fadb; 》 ⛺️ 生活的理想&#xff0c;就是为了理想的生活 ! 目录 ⭐ 专栏简介 &#x1f4d8; 文章引言 一、N…

Git 修改历史 commit message

一. 修改最新的 commit log 修改最近一次commit message&#xff0c; 直接使用命令 git commit --amend 就可以完成修改二. 修改历史 commit log 查看日志(按 q 退出) git log --oneline # 查看5步的log。 git log --oneline -5选择要修改的commit 信息 # 要修改的 commit log…

微服务的注册发现和微服务架构下的负载均衡

文章目录 微服务注册模型服务注册与发现怎么保证高可用【1. 服务端崩溃检测】【2. 客户端容错】【3. 注册中心选型】 微服务架构下的负载均衡【1.轮询与加权轮询】【2.随机与加权随机】【3.哈希与一致性哈希】【4.最少连接数】【5.最少活跃数】【6.最快响应时间】【总结】 负载…

微服务简单理解与快速搭建

分布式和微服务 含义 微服务架构 微服务架构风格是一种将一个单一应用程序开发为一组小型服务的方法&#xff0c;每个服务运行在自己的进程中&#xff0c;服务间通信采用轻量级通信机制(通常用HTTP资源API)。这些服务围绕业务能力构建并且可通过全自动部署机制独立部署。这些服…

ARM day4

LED灯亮灭控制 .text .global _start _start: 1ldr r0,0x50000a28ldr r1,[r0]orr r1,r1,#(0x3<<4)str r1,[r0] 2ldr r0,0x50006000ldr r1,[r0]bic r1,r1,#(0x3<<20)orr r1,r1,#(0x1<<20)bic r1,r1,#(0x3<<16)orr r1,r1,#(0x1<<16)str r1,[r0]…