雷达测角原理、测角精度、测角分辨率以及3DFFT角度估计算法汇总

1.角度测量方法

依据:电磁波的直线传播雷达天线的方向性。

分类:振幅法测角、相位法测角

1.1 相位法测角

        相位法测角利用多个天线所接收回波信号之间的相位差进行测角。如下图所示;

图 1

设在θ方向有一远区目标,则到达接收点的目标所反射的电磁波近视为平面波。由于两天线间距为d,故它们所收到的信号存在波程差∆𝑅,而产生一相位差,由图可知:

其中λ为雷达波长。如用相位计进行比相,测出其相位差为φ,就可以确定目标方向θ0。

1.1.1 测角误差(精度)与多值性问题

        相位差φ值测量不准,将产生测角误差,它们之间的关系如下(对上式相位差两边取微分):

式中可以看出,采用读数精度高的相位计,或减小𝜆/𝑑的值(增大𝑑/𝜆值),均可以提高测角精度。也注意到:当θ=0时,即目标处在天线法线方向时,测角误差dθ最小。当θ增大,dθ也增大,为保证一定的测角精度,θ的范围有一定的限制。

增大d/λ虽然可提高测角精度,但根据式(1)可知,在感兴趣的θ范围(测角范围)内,当d/λ加大到一定程度时,φ值可能超过2π,此时φ=2𝜋𝑁+𝜓,其中N为整数;ψ<2𝜋,而相位计实际读数为ψ值。由于N未知,因而真实的φ值不能确定,就出现多值(角度模糊)问题。必须解决多值性问题(解角度模糊),即只有判定N值才能确定目标方向。比较有效的办法就是利用三天线测角设备,间距大的13天线用来得到高精度测量,而间距小的12天线用来解决多值性。如图所示;

图 2

设目标在θ方向。天线1、2之间的距离为d12,天线1、3之间的距离为d13,适当选择d12,使1、2收到的信号之间的相位差在测角范围内均满足:

𝜑12由相位计1读出。根据要求,选择较大的d13,则天线1、3收到的信号的相位差为:

𝜑13由相位计2读出,但实际读数是小于2π的ψ。为了确定N值,可利用如下关系:

根据相位计1读数𝜑12可算出来𝜑13,但𝜑12包含由相位计的读数误差,由式(4)标出的𝜑13具有的误差为相位计误差的𝑑13/𝑑12倍,它只是式(3)的近似值,只要𝜑12的读数误差值不大,就可用它确定N,即把(𝑑13/𝑑12)𝜑12除2π,所得商的整数部分就是N值。然后由式(3)算出𝜑13并确定θ。由于𝑑13/𝜆值较大,保证了所要求的测角精度。

1.2 振幅法测角

        振幅法测角是用天线收到的回波信号幅度值来做角度测量的,该幅度值的变化规律取决于天线方向图以及天线扫描方式。主要分为:

图 3

1.2.1 最大信号法 

        当天线波束作圆周扫描或在一定扇形范围内作匀角速扫描时,对收发共用天线的单基地脉冲雷达而言,接收机输出的脉冲串幅度值被天线双程方向图函数所调制。找出脉冲串的最大值(中心值),确定该时刻波束轴线指向即为目标所在方向。通俗来说,就是通过转动天线波束方向,当波束中心对准目标时,目标回波功率(幅度)最大,此时通过确定最大值对应的波束指向即为目标所在角度。

        最大信号法测角的优点1.简单易于实现;2.用天线方向图的最大值方向测角,此时回波最强,故信噪比最大,对检测发现目标是有利的。

        最大信号法测角的缺点:1.直接测量时精度不是很高,约为波束半功率宽度(𝜃0.5)的20%左右。2.由于方向图最大值附近比较平坦,最大点不易判别,测量方法改进后可提高精度。3.不能判别目标偏离波速轴线的方向,故不能用于自动测角。

        最大信号法测角用途:广泛用于搜素、引导雷达。

1.2.2 等信号法

        等信号法测角采用两个相同且彼此部分重叠的波束,其方向如下图所示。如果目标处在两个波束的交叠轴OA方向,则由两个波束收到的信号强度相等,否则一个波束收到的信号强度高于另一个。故常常称OA为等信号轴。当两个波束收到的回波信号相等时,等信号轴所指方向即为目标方向。如果目标处在OB方向,波束2的回波比波束1的强,处在OC方向时,波束2的回波较波束1的弱,因此,比较两个波束回波的强弱就可以判断目标偏离等信号轴的方向,并可用查表的办法估计出偏离等信号轴的大小。

图 4

设天线电压方向性函数为F(θ),等信号轴OA的指向为θ0,则波束1、2的方向性函数可分别写成:

 

𝜃𝑘为𝜃0与波束最大值方向的偏角。

        用等信号法测量时,波束1接收到的回波信号𝑢1=𝐾𝐹1(𝜃)=𝐾𝐹(𝜃𝑘−𝜃𝑡),波束2收到的回波电压值为𝑢2=𝐾𝐹2(𝜃)=𝐾𝐹(𝜃𝑘+𝜃𝑡),式中𝜃𝑡为目标方向偏离等信号轴𝜃0的角度。对𝑢1和𝑢2信号进行处理,可以获得目标𝜃𝑡的信息。

图 5

 

等信号法中,两个波束可以同时存在,若用两套相同的接收系统同时工作,则称同时波瓣法;两波束也可以交替出现,或只要其中一个波束,使它绕OA轴旋转,波束便按时间顺序在1、2位置交替出现,只要用一套接收系统工作,则称为顺序波瓣法。

1.2.2.1 比幅法

        两信号幅度的比值

根据比值的大小可以判断目标偏离𝜃0的方向,查找预先制定的表格就可估计出目标偏离𝜃0的数值。值得注意的是,比幅法中,只有𝜃𝑡是未知数,𝜃𝑘为固定常数。

1.2.2.2 和差法(了解即可)

        由𝑢1及𝑢2可求得其差值∆(𝜃𝑡)及和值∑(𝜃𝑡),即

在等信号轴θ=𝜃0附近泰勒展开得到差值的近似表达为:

而和信号为

同理,在θ=𝜃0泰勒展开:

于是联合和差值,即可判断目标偏离𝜃0的方向大小,

因为Δ/∑正比于目标偏离𝜃0的角度𝜃𝑡,故可用它来判读角度𝜃𝑡的大小及方向。

1.2.2.3 等信号法优缺点

优点:

        1.测角精度比最大信号法高,因为等信号轴附近方向图斜率较大,目标略微偏离等信号轴时,两信号强度变化较显著。由理论分析可知,对收发共用天线的雷达,精度约为波束半功率宽度的2%,比最大信号法高约一个量级。

        2.根据两个波束收到的信号的强弱可判别目标偏离等信号轴的方向,便于自动测角。

缺点:

         1.测角系统较复杂;

         2.等信号轴方向不是方向图最大值方向,故在发射功率相同的条件下,作用距离比最大信号法小些。若两波束交点选择在最大值的0.7~0.8处,则对收发共用天线的雷达,作用距离比最大信号法减小约20%~30%。

应用:

        等信号法常用来进行自动测角,即应用于跟踪雷达中。

2.角度分辨率

         雷达角度(方位角、俯仰角)分辨率取决于波束宽度。影响雷达角度分辨率的主要因素包括以下几个:

 1.雷达天线的孔径大小:天线孔径越大,其发射和接收波束的主瓣越窄,从而提高了角度分辨率。

 2.雷达的工作频率:频率越高,波长越短,相应的波束宽度也会变窄,从而提高了角度分辨率。

 3.雷达系统的信号处理能力:高性能的信号处理算法和硬件可以有效地抑制杂散信号和噪声,提高角度分辨率。

 4.目标与背景的信号差异:如果目标与背景之间的信号差异较大,那么可以更容易地将目标从背景中分离出来,从而提高角度分辨率。

  5.目标距离:较远的目标可能会由于角度扩展效应而降低角度分辨率。

需要注意的是,角度分辨率并不仅仅受到单一因素的影响,而是由多个因素综合作用的结果。不同雷达系统的设计和工作条件也会导致不同的角度分辨率表现。

3.角度测量精度

        对于角度的测量,k与孔径照射函数A(x)有关,Δ𝑀是方位或仰角的波束宽度。若天线的半功率波束宽度为𝜃3𝑑𝐵,则方位或仰角的测量精度为;

 总结:雷达测距、测速以及测角的精度与它们的分辨率成正比,分辨率越高,精度越高。

 4.角度测量算法

4.1 3DFFT

4.1.1 3DFFT原理

        目标距离的微小变化会导致range-FFT峰值的相位变化。角度估计至少需要2个RX天线。从目标到每个天线的差分距离Δd导致FFT峰值发生相位变化,该相位变化用于估计到达角。

 

图 6

由于相位变化与距离间的关系:

假设天线间距离为d,则∆𝑑=𝑙𝑠𝑖𝑛(𝜃),因此可估算出到达角(DOA)为:

 4.1.2 3DFFT估算准确度(精度)

        由于∆𝜙取决于sin(θ),是一种非线性的依赖关系,因此当θ接近0°时,角度的估算精度较高,θ接近90°时,估算精度降低。

图 7

4.1.3 3DFFT最大不模糊角度

        雷达的最大角视场由雷达可以估算的最大AOA来界定。当Δ𝜙>𝜋时,就会产生角度模糊,如下图所示:

图 8

因此要求:

 4.1.4 3DFFT角度分辨率

        角度分辨率(Θ𝑟𝑒𝑠)是两个物体在ange-FFT中作为单独峰值出现的最小角度的问题

图 9

总结:3DFFT在FMCW雷达中,原理就是利用不同通道间(即不同接收天线)的波程差通过在天线方向进行FFT求得其角度,即相位法测角。

4.2 阵列信号处理相关DOA估计

1.Capon

2.Music

3.Esprit(借助旋转不变性的信号参数估计技术)

未完待续。

5.总结

        有关阵列信号处理DOA估计内容,可以观看本人DOA估计算法专栏,本人会不定期更新。另外,创作不易,望各位多多支持。

参考资料:

雷达原理(丁鹭飞版)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/142323.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一个破单机,也要用远程缓存?

大家好&#xff0c;豆小匠终于开始Coding了&#xff0c;这期来聊聊实战相关的杂谈。 正文开始&#xff01; 作为编程萌新的时候&#xff0c;总想着把程序做复杂&#xff0c;堆技术栈。 但是程序是为场景服务的&#xff0c;比如&#xff0c;我想提高接口的响应速度&#xff0c…

Linux应用层点亮硬件的LED灯

一 应用层操作硬件的两种方法 应用层想要对底层硬件进行操控&#xff0c;通常可以通过两种方式&#xff1a; /dev/目录下的设备文件&#xff08;设备节点&#xff09;&#xff1b;/sys/目录下设备的属性文件。 具体使用哪种方式需要根据不同功能类型设备进行选择&#xff0c;通…

vscode设置vue3代码格式化

vscode设置vue3代码格式化 vscode设置vue3代码格式化 下载插件设置格式化时选用的插件实际使用 使用Prettier默认配置使用Prettier添加自定义配置使用Volar 完整配置文件参考链接 下载插件 可以使用Volar或Prettier 设置格式化时选用的插件 mac&#xff1a;【shift】【op…

【C++】类与对象 I

类与对象 I &#xff1a; 前言&#xff1a;&#xff08;C&#xff09;面向过程 和&#xff08;C&#xff09;面向对象 初步认识前言&#xff1a;类的引入一、类的介绍二、类的定义&#xff08;一&#xff09;class 语法&#xff08;二&#xff09;类的两种定义方式&#xff1a;…

【MySql系列】深入解析数据库索引

写在前面 MySQL索引是数据库中一个关键的概念&#xff0c;它可以极大地提高查询性能&#xff0c;加快数据检索速度。但是&#xff0c;要充分发挥索引的作用&#xff0c;需要深入理解它们的工作原理和使用方式。 在本文中&#xff0c;我们将深入解析MySQL索引&#xff0c;探讨它…

JavaWeb——CSS3的使用

目录 1. CSS概述 2. CSS引入方式 3. CSS颜色显示 4. CSS选择器 4.1. 元素&#xff08;标签&#xff09;选择器 4.2. id选择器 4.3. 类选择器 4.4. 三者优先级 5. 盒子模型 1. CSS概述 CSS&#xff0c;全称为“Cascading Style Sheets”&#xff0c;中文译为“层叠样式…

OpenMediaVault控制台web页面密码重置

要重置 OpenMediaVault&#xff08;OMV&#xff09;Web 控制台的密码&#xff0c;可以使用 omv-firstaid 命令行工具中的相应选项。按照以下步骤进行操作&#xff1a; 以管理员权限登录到 OMV 的命令行界面&#xff08;通过 SSH 或直接登录&#xff09;。 ssh登陆到root用户 运…

【数据仓库】数仓分层方法详解与层次调用规范

文章目录 一. 数仓分层的意义1. 清晰数据结构。2. 减少重复开发3. 方便数据血缘追踪4. 把复杂问题简单化5. 屏蔽原始数据的异常6. 数据仓库的可维护性 二. 如何进行数仓分层&#xff1f;1. ODS层2. DW层2.1. DW层分类2.2. DWD层2.3. DWS 3. ADS层 4、层次调用规范 一. 数仓分层…

25.4 MySQL 函数

1. 函数的介绍 1.1 函数简介 在编程中, 函数是一种组织代码的方式, 用于执行特定任务. 它是一段可以被重复使用的代码块, 通常接受一些输入(参数)然后返回一个输出. 函数可以帮助开发者将大型程序分解为更小的, 更易于管理的部分, 提高代码的可读性和可维护性.函数在编程语言…

[01]汇川IMC30G-E系列运动控制卡应用笔记

简介 IMC30G-E系列产品是汇川技术自主研制的高性能EtherCAT网络型运动控制器&#xff08;卡&#xff09;&#xff0c;同时兼容脉冲轴的控制&#xff1b;IMC30G-E支持点位/JOG、插补、多轴同步、高速位置比较输出、PWM等全面的运动控制功能&#xff0c;具备高同步控制精度。 开发…

修改Openwrt软路由的web端口

如何修改openwrt路由器的web访问端口号&#xff1f; 在OpenWrt路由器上&#xff0c;如何修改Web访问端口号&#xff0c;通常涉及到修改HTTP服务器的配置文件。默认情况下&#xff0c;OpenWrt使用的HTTP服务器是uHTTPd。 以下是修改Web访问端口号的步骤&#xff1a; 一、通过…

Linux编辑器:vim的简单介绍及使用

目录 1.什么是vim 2.vim的基本概念 3.vim 的基本操作 4. 各模式下的命令集 4.1 正常模式命令集 4.2 末行模式命令集 5.补充 5.1 vim支持多文件编辑 5.2 vim 的配置 1.vim 配置原理 2. 常用简单配置选项&#xff1a; 3. 使用插件 1.什么是vim Vim 是从 vi 发展出…

Easyui DataGrid combobox联动下拉框内容

发票信息下拉框联动&#xff0c;更具不同的发票类型&#xff0c;显示不同的税率 专票 普票 下拉框选择事件 function onSelectType(rec){//选中值if (rec2){//普通发票对应税率pmsPlanList.pmsInvoiceTaxRatepmsPlanList.pmsInvoiceTaxRateT}else {//专用发票对应税率pmsPlan…

nmap原理与使用

kali的命令行中可以直接使用 nmap 命令&#xff0c;打开一个「终端」&#xff0c;输入 nmap 后回车&#xff0c;可以看到 nmap 的版本&#xff0c;证明 nmap 可用。 一、端口扫描 扫描主机的「开放端口」&#xff0c;在nmap后面直接跟主机IP&#xff08;默认扫描1000个端口&am…

SQL使用

--天空会的像哭过&#xff0c;离开你以后 并没有更自由 SQL进行数据的删除 一、删除delete 语法 delete [from] 表名称 where 条件数据删除&#xff0c;不能删除某一列&#xff0c;因为删除是对记录而言 2.1 删除是一条一条删除&#xff0c;每次删除都会将操作写入日志文件 删…

个体诊所电子处方系统设计,诊所电子处方模板,药店电子处方系统,佳易王电子处方管理系统V16.0下载

个体诊所电子处方系统设计&#xff0c;诊所电子处方模板&#xff0c;药店电子处方系统&#xff0c;佳易王电子处方管理系统V16.0下载 软件支持配方模板&#xff0c;病人病历记录查询等&#xff0c;软件打印处方单所用的纸张为 A5纸。软件可以下载试用&#xff0c;点击最下方官网…

C++设计实现日志系统

转载&#xff1a;C设计实现日志系统 - 知乎 (zhihu.com) 日志系统几乎是每一个实际的软件项目从开发、测试到交付&#xff0c;再到后期的维护过程中极为重要的 查看软件代码运行流程、 还原错误现场、 记录运行错误位置及上下文等的重要依据。一个高性能的日志系统&#xff0c…

Windows上基于Tesseract OCR5.0官方语言库的LSTM字库训练

系列文章目录 Tesseract OCR引擎 文章目录 系列文章目录前言一、LSTM字库训练是什么&#xff1f;二、使用步骤1. 环境准备1.1下载Tesseract 程序并安装1.2下载Tesseract 训练字库1.3下载工具jTessBoxEditor 2. LSTM训练2.1 将要训练的图片(jpg/tif)合并成一个文件2.2 生成box文…

未来之路:大模型技术在自动驾驶的应用与影响

本文深入分析了大模型技术在自动驾驶领域的应用和影响&#xff0c;万字长文&#xff0c;慢慢观看~ 文中首先概述了大模型技术的发展历程&#xff0c;自动驾驶模型的迭代路径&#xff0c;以及大模型在自动驾驶行业中的作用。接着&#xff0c;详细介绍了大模型的基本定义、基础功…

springcloud旅游网站源码

开发技术&#xff1a; jdk1.8&#xff0c;mysql5.7&#xff0c;idea&#xff0c;nodejs&#xff0c;vscode springcloud springboot mybatis vue 功能介绍&#xff1a; 用户端&#xff1a; 登录注册 首页显示搜索景区&#xff0c;轮播图&#xff0c;旅游攻略列表 点击攻…