玩转LaTeX(三)【数学公式(基础)、​矩阵、多行公式】

数学公式基础

导言区(引包)

\usepackage{amsmath}  %带星号的eqution

正文区

\begin{document}%数学公式初步     \section{简介}     \LaTeX{}将排版内容分为文本模式和数学模式。文本模式用于普通文本排版,数学模式用于数学公式排版。     \section{行内公式}   %有三种方式可以写行内公式     \subsection{美元符号}     交换律是 $a+b = b+a$,如$1+2=2+1=3$。     \subsection{小括号}     交换律是 \(a+b = b+a\),如\(1+2=2+1=3\)。     \subsection{math环境}     交换律是 \begin{math}a+b = b+a\end{math},如\begin{math}1+2=2+1=3\end{math}。     \section{上下标}     \subsection{上标}     $3x^{20}-x+2 = 0$   %大括号最好都加上,无论是一位数字还是多位数字     $3x^{3x^{20}-x+2}-x+2=0$   %也可以用已有的公式做上标处理不过要加大括号     \subsection{下标}     $a_0,a_1,a_2$     $a_0,a_1,a_2,...,a_{100},a_{3x^{20}-x+2}$  %同理,超过一个数字也要加大括号,也可以代入公式     \section{希腊字母}     $\alpha$ \quad $\beta$ \quad$\gamma$ \quad$\epsilon$ \quad$\pi$ \quad$\omega$ \quad$\Gamma$ \quad$\Delta$ \quad$\Pi$ \quad$\Omega$ \quad   %大写字母开始的希腊字母用于排版大写的希腊字母     $\alpha^3+\beta^2+\gamma=0$  %希腊字母也可以用在通用公式中     \section{数学函数}     $\log$ \quad $\sin$ \quad$\cos$ \quad$\arcsin$ \quad$\arccos$ \quad$\ln$     $\sin^2 x + \cos^2 x = 1$  %构成公式          $y = \sin^{-1} x$ \quad $y = \log_2 x$ \quad $y = \ln x$          $\sqrt{2}$ \quad $\sqrt{x^2+y^2}$ \quad $\sqrt{2+\sqrt{2}}$ \quad $\sqrt[4]{x}$ \quad %用于排版公式,"[]"用于指定开方次数          \section{分式} %两种方式     大约是原体积的$3/4$。     大约是原体积的$\frac{3}{4}$。%第一个{}是分子,第二个是分母。     $\frac{x}{x^2+x+1}$    %复杂公式     $\frac{\sqrt{x-1}}{\sqrt{x+1}}$     $\frac{1}{1+\frac{1}{x}}$     $\sqrt{\frac{x}{x^2+x+1}}$     \section{行间公式}     \subsection{美元符号}     交换律是      $$a+b = b+a$$     如$$1+2=2+1=3$$     \subsection{中括号}     交换律是      \[a+b = b+a\]     如\[1+2=2+1=3\]     \subsection{displaymath环境}     交换律是     \begin{displaymath}     a+b=b+a,     \end{displaymath}     \begin{displaymath}     1+2=2+1=3.     \end{displaymath}     \subsection{自动编号公式equation环境}     交换律公式见式\ref{eq:commutative}     \begin{equation}         a+b=b+a \label{eq:commutative}     \end{equation}     \subsection{不编号公式equation*环境}     交换律公式见式\ref{eq:commutative2}   %此时的编号为小节编号     \begin{equation*}   %带星号的quation需要引入宏包:“\usepackage{amsmath}”         a+b=b+a \label{eq:commutative2}     \end{equation*}         公式的编号与交叉引用也是自动实现的,大家在排版中要习惯采用自动化的方式处理诸如图、表、公式的编号与交叉引用。再如公式\ref{eq:pol}:     \begin{equation}         x^5-7x^3+4x = 0 \label{eq:pol}     \end{equation}\end{document}

矩阵:

导言区:(自命令)

\newcommand{\adots}{\mathinner{\mkern2mu%\raisebox{0.1em}{.}\mkern2mu\raisebox{0.4em}{.}%\mkern2mu\raisebox{0.7em}{.}\mkern1mu}}   %adots执行后面大括号的内容。用不同的方式排版不同的句号

正文区:

\begin{document} %矩阵     %在latex中使用matrix环境实现矩阵排版,需要引入amsmath宏包     \[     \begin{matrix}    %使用矩阵排版的matrix和使用表格排版的tabular非常相似         0 & 1 \\      %用&分割列,用\\分割行         1 & 0     \end{matrix}     \quad      %pmatrix环境(矩阵两端加小括号)     \begin{pmatrix}         0 & -i \\          i & 0     \end{pmatrix} \quad      \begin{bmatrix}     %加中括号         0 & -1 \\          1 & 0     \end{bmatrix} \quad      \begin{Bmatrix}     %加大括号         1 & 0 \\          0 & -1     \end{Bmatrix} \quad      \begin{vmatrix}     %加单竖线         a & b \\          c & d     \end{vmatrix} \quad      \begin{Vmatrix}     %加双竖线         i & 0 \\          0 & -i     \end{Vmatrix} \quad      \]     \[     A = \begin{pmatrix}              a_{11}^2 & a_{12}^2 &a_{13}^2 \\    %上下标在矩阵中的使用         0 & a_{22} & a_{23} \\         0 & 0 & a_{33}     \end{pmatrix}     \]    \[    B = \begin{bmatrix}      %矩阵中常用的省略号(横竖斜)         a_{11} & \dots & a_{1n} \\         \adots & \ddots & \vdots \\    %adots是自己定义出来的。当然往左斜这个省略号也可以直接用命令“\iddots”实现,不过需要导包mathdots,具体内容可见往期回顾的第一篇内容。         0 & & a_{nn}     \end{bmatrix}_{n \times n}    %times排版乘号    \]          %利用矩阵的嵌套还可以实现分块矩阵     ↓↓↓     \[     \begin{pmatrix}         \begin{matrix} 1 & 0 \\ 0 & 1\end{matrix}           & \text{\Large 0} \\  %"\text{\Large 0}"表示临时切换到文本模式         {\Large 0} & \begin{matrix}1 & 0 \\ 0 & -1 \end{matrix}   %不加text输出的0是不一样的     \end{pmatrix}     \]     %三角矩阵     \[     \begin{pmatrix}         a_{11} & a_{12} \cdots & a_{1n} \\         & a_{22} & \cdots & a_{2n} \\         & & \ddots & \vdots \\         \multicolumn{2}{c}{\raisebox{1.3ex}[0pt]{\Huge 0}}         & & a_{nn}   %"\multicolumn":合并多列;"\raisebox":调整高度     \end{pmatrix}     \]     %产生跨列的省略号:\hdotsfor{<列数>}     \[     \begin{pmatrix}         1 & \frac 12 & \dots & \frac 1n \\         \hdotsfor{4} \\         m & \frac m2 & \dots & \frac mn     \end{pmatrix}     \]     %行内小矩阵(smallmatrix)环境     复数 $z=(x,y)$ 也可用矩阵     \begin{math}             \left(      %math环境下的括号手动加,也可以改成中括号等         \begin{smallmatrix}         x & -y \\ y & x         \end{smallmatrix}         \right)     \end{math}来表示。%“\left”"\right"命令成对出现     %array环境(类似于表格环境tabular)     \[     %第一行第1列     \begin{array}{r|r}         \frac12 & 0 \\         \hline          0 & -\frac abc \\  %frac命令,后面直接跟数字表示分子分母,多位数需要加花括号,frac后面不能直接跟字母,会报错,这些细节要注意。必要时用花括号进行分组,比如这里的c既不属于分母也不属于分子。     \end{array}     \]     %利用array环境构造复杂矩阵     \[     \begin{array}{c@{\hspace{-5pt}}l}   %@{<内容>}:添加任意内容,不占表项计数;向左移-5pt的距离     \left(     \begin{array}{ccc|ccc}       a   & \cdots & a & b & \cdots & b \\       & \ddots & \vdots & \vdots & \adots \\       & & a & b \\ \hline       & & & c & \cdots & c \\       & & & \vdots & & \vdots \\       \multicolumn{3}{c|}{\raisebox{2ex}[0pt]{\Huge 0}}       & c & \cdots & c     \end{array}     \right)     &     %第一行第2列     \begin{array}{l}          \left.\rule{0mm}{7mm}\right\}p \\  %"\left."表示与"\right\"配对,\left.什么都不输出          \\          \left.\rule{0mm}{7mm}\right\}q     \end{array}     \\[-5pt]     %第二行第一列     \begin{array}{cc}          \underbrace{\rule{17mm}{0mm}}_m &  %产生下面的横向大括号,rule指定尺寸          \underbrace{\rule{17mm}{0mm}}_m     \end{array}     &  %第二行第二列       \end{array}     \]\end{document}

多行公式

导言区(导包):

\usepackage{amsmath}  %带星号的eqution\usepackage{amssymb}

正文区

\begin{document}%多行公式     %gather环境     \begin{gather}   %实现对公示的分行排列及编号         a + b = b + a \\            ab ba     \end{gather}     \begin{gather*}    %不带编号         3 + 5 = 5 + 3 = 8 \\         3 \times 5 = 5 \times 3     \end{gather*}     \begin{gather}         3^2+4^2=5^2 \notag \\   %在gather环境中,也可以使用\notag阻止编号(“\\”前使用)         5^2+12^2=13^2 \notag \\         a^2+b^2=c^2     \end{gather}     %align环境(用&进行对齐)     \begin{align}         x &= t+\cos t +1\\         y&==2\sin t     \end{align}     \begin{align*}         x &= t & x &= \cos t & x &= t \\         y &= 2t & y &= \sin(t+1) & y &= \sin t     \end{align*}     %split环境(用&对齐,跟align一样,编号在中间位置)     \begin{equation}         \begin{split}             \cos 2x &= \cos^2 x -\sin^2 x \\             &= 2\cos^2 x-1         \end{split}     \end{equation}     %case环境(每行公式中使用&分隔两部分,通常表示值和后面的条件)【分段公式】     \begin{equation}         D(x) = \begin{cases}             1,&\text{如果 } x\in \mathbb{Q};\\   %"\in"命令表示输出“∈”符号;“\text”命令表示临时切换到文本模式,若果不使用该命令,则在数学排版公式中无法实现中文排版。             0,&\text{如果 } x\in \mathbb{R}\setminus\mathbb{Q}. %“mathbb”表示输出花体字符,需要导包:“\usepackage{amssymb}”;“\setminus”:除号         \end{cases}     \end{equation}\end{document}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/14218.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode】206.反转链表

题目 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1]示例 2&#xff1a; 输入&#xff1a;head [1,2] 输出&#xff1a;[2,1]示例 3&#xff1a; …

oracle,获取每日24*60,所有分钟数

前言&#xff1a; 为规范用户的时间录入&#xff0c;因此我们采用下拉的方式&#xff0c;让用户选择需要的时间&#xff0c;因此我们需要将一天24小时的时间拆分为类似00:00,00:01...23:00,23:01,23:59。因此我们需要生成24*601440行的下拉复选值。具体效果如下图所示。 思路 1…

【Golang 接口自动化03】 解析接口返回XML

目录 解析接口返回数据 定义结构体 解析函数&#xff1a; 测试 优化 资料获取方法 上一篇我们学习了怎么发送各种数据类型的http请求&#xff0c;这一篇我们来介绍怎么来解析接口返回的XML的数据。 解析接口返回数据 定义结构体 假设我们现在有一个接口返回的数据resp如…

❤ yarn 和npm 的使用

❤ yarn 和npm 的使用 yarn 版本1的使用 yarn 简介 Yarn是facebook发布的一款取代npm的包管理工具。 yarn特点&#xff1a; 1&#xff0c;速度超快。 Yarn 缓存了每个下载过的包&#xff0c;所以再次使用时无需重复下载。 同时利用并行下载以最大化资源利用率&#xff0c;因…

【代理模式】了解篇:静态代理 动态代理~

目录 1、什么是代理模式&#xff1f; 2、静态代理 3、动态代理 3.1 JDK动态代理类 3.2 CGLIB动态代理类 4、JDK动态代理和CGLIB动态代理的区别&#xff1f; 1、什么是代理模式&#xff1f; 定义&#xff1a; 代理模式就是为其他对象提供一种代理以控制这个对象的访问。在某…

华为nat64配置

1.前期环境准备 环境拓扑 拓扑分为两个区域,左边为trust区域,使用IPv4地址互访,右边为untrust区域,使用IPv6地址互访 2.接口地址配置 pc1地址配置 pc2地址配置 FW接口配置 (1)首先进入防火墙配置界面 注:防火墙初始账号密码为user:admin,pwd:Admin@123,进入之后…

8.docker仓库

文章目录 Docker仓库本地私有仓库Docker HarborDocker harbor部署访问页面创建用户下载私有仓库镜像harbor同步 Docker仓库 本地私有仓库 ##先下载 registry 镜像docker pull registry##修改配置文件&#xff0c;在 daemon.json 文件中添加私有镜像仓库地址vim /etc/dock…

SQL-每日一题【1070. 产品销售分析 III】

题目 销售表 Sales&#xff1a; 产品表 Product&#xff1a; 编写一个 SQL 查询&#xff0c;选出每个销售产品 第一年 销售的 产品 id、年份、数量 和 价格。 结果表中的条目可以按 任意顺序 排列。 查询结果格式如下例所示&#xff1a; 示例 1&#xff1a; 解题思路 前置知…

Python爬虫的urlib的学习(学习于b站尚硅谷)

目录 一、页面结构的介绍  1.学习目标  2.为什么要了解页面&#xff08;html&#xff09;  3. html中的标签&#xff08;仅介绍了含表格、无序列表、有序列表、超链接&#xff09;  4.本节的演示 二、Urllib  1.什么是互联网爬虫&#xff1f;  2.爬虫核心  3.爬虫…

【MySQL】复合查询

复合查询目录 一、基本查询二、多表查询三、自连接四、子查询4.1 单行子查询4.2 多行子查询4.3 多列子查询4.4 在from子句中使用子查询4.5 合并查询4.5.1 union4.5.2 union all 五、实战OJ 一、基本查询 --查询工资高于500或岗位为MANAGER的雇员&#xff0c;同时还要满足他们的…

LLaMA模型论文《LLaMA: Open and Efficient Foundation Language Models》阅读笔记

文章目录 1. 简介2.方法2.1 预训练数据2.2 网络架构2.3 优化器2.4 高效的实现 3.论文其余部分4. 参考资料 1. 简介 LLaMA是meta在2023年2月开源的大模型&#xff0c;在这之后&#xff0c;很多开源模型都是基于LLaMA的&#xff0c;比如斯坦福大学的羊驼模型。 LLaMA的重点是比…

从Vue层面 - 解析发布订阅模式和观察者模式区别

目录 前言一、发布订阅模式什么是发布订阅模式&#xff1f;应用场景 二、观察者模式1&#xff09;什么是观察者模式&#xff1f;2&#xff09;应用场景3&#xff09;vue中的观察者模式观察者&#xff08;订阅者&#xff09; - Watcher目标者&#xff08;发布者&#xff09; - D…

剑指 Offer 46.! 把数字翻译成字符串(动态规划,青蛙跳台问题的变形)

剑指 Offer 46. 把数字翻译成字符串 中等 588 相关企业 给定一个数字&#xff0c;我们按照如下规则把它翻译为字符串&#xff1a;0 翻译成 “a” &#xff0c;1 翻译成 “b”&#xff0c;……&#xff0c;11 翻译成 “l”&#xff0c;……&#xff0c;25 翻译成 “z”。一个数字…

rtthread的idle线程不应该长时间堵塞

RT-Thread是一个实时嵌入式操作系统&#xff0c;它的空闲线程&#xff08;Idle Thread&#xff09;是在系统中没有其他任务需要执行时运行的线程。空闲线程通常用于执行一些低优先级的任务或者进行系统的休眠等操作。 RT-Thread的空闲线程不能在线程中堵塞的原因是为了确保系统…

STM32CubeIDE(串口)

目录 一、轮询模式 1.1 配置USART2为异步模式 1.2 500ms发送一次消息 1.3 通信结果 1.4 串口控制LED 二、中断收发 2.1 开启中断 2.2 中断发送接收 2.2.1 中断发送只需要调用接口 2.2.2 中断接收 2.3 实验结果 三、DMA模式与收发不定长数据 3.1 DMA通道配置 3.2 DMA…

设计模式-命令模式在Java中的使用示例-桌面程序自定义功能键

场景 欲开发一个桌面版应用程序&#xff0c;该应用程序为用户提供了一系列自定义功能键&#xff0c;用户可以通过这些功能键来实现一些快捷操作。 用户可以将功能键和相应功能绑定在一起&#xff0c;还可以根据需要来修改功能键的设置&#xff0c;而且系统在未来可能还会增加…

使用 OpenCV 进行图像模糊度检测(拉普拉斯方差方法)

写在前面 工作中遇到&#xff0c;简单整理人脸识别中&#xff0c;对于模糊程度较高的图像数据&#xff0c;识别率低&#xff0c;错误率高。虽然使用 AdaFace 模型&#xff0c;对低质量人脸表现尤为突出。但是还是需要对 模糊程度高的图像进行丢弃处理当前通过阈值分类&#xff…

临时段的cleanup引起的enq:TT–content等待事件处理过程

文章目录 1.问题描叙2.查因过程3.根因4.处理过程4.1 Mark目标segment为CORRUPT4.2 Drop目标segment4.3 释放占用的空间 1.问题描叙 接到用户抱怨无法修改表架构&#xff1a; 2.查因过程 查看当前DB活动&#xff1a; Select sid,serial#,osuser,program,terminal,sql_id,bl…

计算机视觉:图像质量评价指标之 PSNR 和 SSIM

1. PSNR (Peak Signal-to-Noise Ratio) 峰值信噪比 由上可见&#xff0c;PSNR相对MSE多了一个峰值&#xff0c;MSE是绝对误差&#xff0c;再加上峰值是一个相对误差指标 一般地&#xff0c;针对 uint8 数据&#xff0c;最大像素值为 255,&#xff1b;针对浮点型数据&#xff…

基于注解手写Spring的IOC(上)

一、思路 先要从当前类出发找到对应包下的所有类文件&#xff0c;再从这些类中筛选出类上有MyComponent注解的类&#xff1b;把它们都装入Map中&#xff0c;同时类属性完成MyValue的赋值操作。 二、具体实现 测试类结构&#xff1a; 测试类&#xff1a;myse、mycontor、BigSt…