使用 OpenCV 进行图像模糊度检测(拉普拉斯方差方法)

写在前面


  • 工作中遇到,简单整理
  • 人脸识别中,对于模糊程度较高的图像数据,识别率低,错误率高。
  • 虽然使用 AdaFace 模型,对低质量人脸表现尤为突出。
  • 但是还是需要对 模糊程度高的图像进行丢弃处理
  • 当前通过阈值分类,符合要求的进行特性提取
  • 实际应用中,可以维护一个质量分数
  • 比如由 模糊程度图片字节大小人脸姿态评估(欧拉角)等 算出一个综合质量分,用于人脸归类/聚类
  • 理解不足小伙伴帮忙指正

对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是对大众理想的懦弱回归,是随波逐流,是对内心的恐惧 ——赫尔曼·黑塞《德米安》


模糊度检测算法来自 :https://pyimagesearch.com/2015/09/07/blur-detection-with-opencv/

具体实现方式小伙伴可直接看原文

这种方法起作用的原因是由于拉普拉斯算子本身的定义,它用于测量图像的二阶导数。拉普拉斯突出显示包含快速强度变化的图像区域,与 Sobel 和 Scharr 算子非常相似。而且,就像这些运算符一样,拉普拉斯通常用于边缘检测。这里的假设是,如果图像包含高方差,则存在广泛的响应,包括边缘类和非边缘类,代表正常的焦点图像。但是,如果方差非常低,则响应的分布很小,表明图像中的边缘非常小。众所周知,图像越模糊,边缘就越少

下面为原文的 Demo

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@File    :   detect_blur.py
@Time    :   2023/07/24 22:57:51
@Author  :   Li Ruilong
@Version :   1.0
@Contact :   liruilonger@gmail.com
@Desc    :   图片模糊度检测
"""# here put the import lib# import the necessary packages
from imutils import paths
import cv2
import osdef variance_of_laplacian(image):gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# compute the Laplacian of the image and then return the focus# measure, which is simply the variance of the Laplacianreturn cv2.Laplacian(gray, cv2.CV_64F).var()# loop over the input images
for imagePath in paths.list_images("./res/mh"):# load the image, convert it to grayscale, and compute the# focus measure of the image using the Variance of Laplacian# methodimage = cv2.imread(imagePath)fm = variance_of_laplacian(image)text = "Not Blurry"print(fm)# if the focus measure is less than the supplied threshold,# then the image should be considered "blurry"if fm < 100:text = "Blurry"# show the imagefile_name = os.path.basename(imagePath)cv2.imwrite(str(fm)+'__' + file_name , image)

核心代码:

cv2.Laplacian(gray, cv2.CV_64F).var()

如果为 Image.image ,可以使用下的方式

def variance_of_laplacian(image):"""@Time    :   2023/07/25 01:57:44@Author  :   liruilonger@gmail.com@Version :   1.0@Desc    :   模糊度检测Args:Returns:void"""numpy_image = np.array(image)cv2_image = cv2.cvtColor(numpy_image, cv2.COLOR_RGB2BGR)gray = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2GRAY)# compute the Laplacian of the image and then return the focus# measure, which is simply the variance of the Laplacianreturn cv2.Laplacian(gray, cv2.CV_64F).var()

实际测试中发现,阈值设置为 100 相对来说比较合适,当然如何数据集很大,可以考虑 提高阈值,当模糊度大于 1000 时,一般为较清晰图片,低于 100 时,图片模糊严重

下面为对一组较模糊数据进行检测

在这里插入图片描述

最后一个图像,模糊度为 667 ,其他为 200 以内

(AdaFace) C:\Users\liruilong\Documents\GitHub\AdaFace_demo>python detect_blur.py
130.99918569797578
97.54477372302556
70.30346984100659
95.56028915335366
77.70006004883219
107.2065965492792
93.43007114319839
75.44132565995248
127.50238903320515
98.11810838476116
69.49917570127641
132.46578324273048
99.2095025510204
92.97255942246558
93.33812691062155
667.4883318795927

博文部分内容参考

© 文中涉及参考链接内容版权归原作者所有,如有侵权请告知 😃


https://pyimagesearch.com/2015/09/07/blur-detection-with-opencv/


© 2018-2023 liruilonger@gmail.com, All rights reserved. 保持署名-非商用-相同方式共享(CC BY-NC-SA 4.0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/14186.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

临时段的cleanup引起的enq:TT–content等待事件处理过程

文章目录 1.问题描叙2.查因过程3.根因4.处理过程4.1 Mark目标segment为CORRUPT4.2 Drop目标segment4.3 释放占用的空间 1.问题描叙 接到用户抱怨无法修改表架构&#xff1a; 2.查因过程 查看当前DB活动&#xff1a; Select sid,serial#,osuser,program,terminal,sql_id,bl…

计算机视觉:图像质量评价指标之 PSNR 和 SSIM

1. PSNR (Peak Signal-to-Noise Ratio) 峰值信噪比 由上可见&#xff0c;PSNR相对MSE多了一个峰值&#xff0c;MSE是绝对误差&#xff0c;再加上峰值是一个相对误差指标 一般地&#xff0c;针对 uint8 数据&#xff0c;最大像素值为 255,&#xff1b;针对浮点型数据&#xff…

基于注解手写Spring的IOC(上)

一、思路 先要从当前类出发找到对应包下的所有类文件&#xff0c;再从这些类中筛选出类上有MyComponent注解的类&#xff1b;把它们都装入Map中&#xff0c;同时类属性完成MyValue的赋值操作。 二、具体实现 测试类结构&#xff1a; 测试类&#xff1a;myse、mycontor、BigSt…

2023牛客暑期多校-J-Qu‘est-ce Que C‘est?(DP)

题意&#xff1a; 给定长度为n的数列,要求每个数都在的范围&#xff0c;且任意长度大于等于2的区间和都大于等于0&#xff0c;问方案数。。 思路&#xff1a; 首先要看出是dp题&#xff0c;用来表示遍历到第i位且后缀和最小为x的可行方案数&#xff08;此时的后缀可以只有最…

IT技术面试必备:如何做好IT类技术面试?

博主 默语带您 Go to New World. ✍ 个人主页—— 默语 的博客&#x1f466;&#x1f3fb; 《java 面试题大全》 &#x1f369;惟余辈才疏学浅&#xff0c;临摹之作或有不妥之处&#xff0c;还请读者海涵指正。☕&#x1f36d; 《MYSQL从入门到精通》数据库是开发者必会基础之…

【Linux】多线程的补充

1 线程安全的单例模式 1.1 什么是单例模式 单例模式是一种 "经典的, 常用的, 常考的" 设计模式. 1.2 什么是设计模式 IT行业这么火, 涌入的人很多. 俗话说林子大了啥鸟都有. 大佬和菜鸡们两极分化的越来越严重. 为了让菜鸡们不太拖大佬的后腿, 于是大佬们针对一些…

04-导数判断凹(concave)凸(convex)性_导数用于泰勒展开

导数与函数凹凸性的关系 函数的二阶导数是和函数的凹凸性是有关系的&#xff0c;凹凸性怎么定义的&#xff1f; 先来做简单的回顾&#xff0c;更多的会在最优化方法里面给大家讲&#xff0c;这里先记住凸函数是向下凸的&#xff0c; 反正就是凹的&#xff0c;是否是凸函数可以…

秒级体验本地调试远程 k8s 中的服务

点击上方蓝色字体&#xff0c;选择“设为星标” 回复”云原生“获取基础架构实践 背景 在这个以k8s为云os的时代&#xff0c;程序员在日常的开发过程中&#xff0c;肯定会遇到各种问题&#xff0c;比如&#xff1a;本地开发完&#xff0c;需要部署到远程k8s集群&#xff0c;本地…

【设计模式】详解观察者模式

文章目录 1、简介2、观察者模式简单实现抽象主题&#xff08;Subject&#xff09;具体主题&#xff08;ConcreteSubject&#xff09;抽象观察者&#xff08;Observer&#xff09;具体观察者&#xff08;ConcrereObserver&#xff09;测试&#xff1a; 观察者设计模式优缺点观察…

十八章:用于弱监督语义分割的自监督等变注意力机制

0.摘要 图像级弱监督语义分割是一个具有挑战性的问题&#xff0c;近年来得到了深入研究。大多数先进的解决方案利用类激活图&#xff08;CAM&#xff09;。然而&#xff0c;由于全监督和弱监督之间存在差距&#xff0c;CAM几乎无法用作对象掩码。在本文中&#xff0c;我们提出了…

[JAVAee]定时器

目录 定时器的含义 定时器的使用 定时器的解析 ①TaskQueue ​②TimerThread ③Timer 定时器的模拟实现 ①创建Task自定义类型 ②创建TimerThread类 ③Timer类 完整代码 定时器的含义 从名字上看,就是我们通俗理解的那个定时器.设置一定的时间,并在一定的时间后发生…

安卓抓包神奇黄鸟HttpCanary安装配置及使用教程

1、下载安装包 黄鸟抓包下载地址 2、安装下载的apk 3、证书安装问题 vivo手机我安装时打开黄鸟app&#xff0c;会直接弹出&#xff0c;直接安装即可 其他手机&#xff0c;需要去系统设置中安装 3.1 搜索 证书&#xff0c;选择CA证书 3.2 进行本人操作验证 3.3 安装HttpCa…

黄东旭:The Future of Database,掀开 TiDB Serverless 的引擎盖

在 PingCAP 用户峰会 2023 上&#xff0c; PingCAP 联合创始人兼 CTO 黄东旭 分享了“The Future of Database”为主题的演讲&#xff0c; 介绍了 TiDB Serverless 作为未来一代数据库的核心设计理念。黄东旭 通过分享个人经历和示例&#xff0c;强调了数据库的服务化而非服务化…

C语言假期作业 DAY 01

题目 1.选择题 1、执行下面程序&#xff0c;正确的输出是&#xff08; &#xff09; int x5,y7; void swap() { int z; zx; xy; yz; } int main() { int x3,y8; swap(); printf("%d,%d\n"&#xff0c;x, y)…

Android Studio 代码模板插件实现

Android Studio 代码模板插件 背景 可以跳过背景和简述&#xff0c;从模板插件实现开始看. 开发新页面时&#xff0c;原先需要写一堆模板代码。比如用Databinding写列表结构的页面&#xff0c;需要手写以下文件&#xff1a; XxActivity.ktXxFragment.ktXxViewModel.ktXxListA…

基于K8s环境·使用ArgoCD部署Jenkins和静态Agent节点

今天是「DevOps云学堂」与你共同进步的第 47天 第⑦期DevOps实战训练营 7月15日已开营 实践环境升级基于K8s和ArgoCD 本文节选自第⑦期DevOps训练营 &#xff0c; 对于训练营的同学实践此文档依赖于基础环境配置文档&#xff0c; 运行K8s集群并配置NFS存储。实际上只要有个K8s集…

CAD .NET 15.0 企业版 Crack

CAD .NET 15.0 企业版 企业版 企业版 企业版 企业版 Updated: June 14, 2023 | Version 15.0 NEW CAD .NET is a library for developing solutions in .NET environment. It supports AutoCAD DWG/ DXF, PLT and other CAD formats. The library can be used in a wide rang…

C语言之pthread_cond_t信号变化探究总结(八十)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

【RabbitMQ(day2)】默认(直连)交换机的应用

文章目录 一、第一种模型&#xff08;Hello World&#xff09;二、第二种模型&#xff08;work queue&#xff09;自动确认机制的后果和公平分配 三、阐述默认交换机 这篇博客是以下资料学后的总结&#xff1a; 不良人的RabbitMQ的教学视频 官方启动教程 RabbitMQ中文文档 一、…

【SQL语句】

目录 一、SQL语句类型 1.DDL 2.DML 3.DLL 4.DQL 二、数据库操作 1.查看 2.创建 2.1 默认字符集 2.2 指定字符集 3.进入 4.删除 5.更改 5.1 库名称 5.2 字符集 三、数据表操作 1.数据类型 1.1 数值类型&#xff08;常见&#xff0c;下同&#xff09; 1.1.1 T…