Spark数据倾斜优化

1 数据倾斜现象

1、现象

绝大多数task任务运行速度很快,但是就是有那么几个task任务运行极其缓慢,慢慢的可能就接着报内存溢出的问题。

2、原因

数据倾斜一般是发生在shuffle类的算子,比如distinct、groupByKey、reduceByKey、aggregateByKey、join、cogroup等,涉及到数据重分区,如果其中某一个key数量特别大,就发生了数据倾斜。

数据倾斜大key定位

从所有key中,把其中每一个key随机取出来一部分,然后进行一个百分比的推算,这是用局部取推算整体,虽然有点不准确,但是在整体概率上来说,我们只需要大概就可以定位那个最多的key了

执行:

spark-submit --master yarn --deploy-mode client --driver-memory 1g --num-executors 3 --executor-cores 2 --executor-memory 6g  --class com.atguigu.sparktuning.join.SampleKeyDemo spark-tuning-1.0-SNAPSHOT-jar-with-dependencies.jar

单表数据倾斜优化

为了减少shuffle数据量以及reduce端的压力,通常Spark SQL在map端会做一个partial aggregate(通常叫做预聚合或者偏聚合),即在shuffle前将同一分区内所属同key的记录先进行一个预结算,再将结果进行shuffle,发送到reduce端做一个汇总,类似MR的提前Combiner,所以执行计划中 HashAggregate通常成对出现。

1、适用场景

聚合类的shuffle操作,部分key数据量较大,且大key的数据分布在很多不同的切片。

2、解决逻辑

两阶段聚合(加盐局部聚合+去盐全局聚合)

3、案例演示

spark-submit --master yarn --deploy-mode client --driver-memory 1g --num-executors 3 --executor-cores 2 --executor-memory 6g  --class com.atguigu.sparktuning.skew.SkewAggregationTuning spark-tuning-1.0-SNAPSHOT-jar-with-dependencies.jar

4 Join数据倾斜优化

4.1 广播Join

1、适用场景

适用于小表join大表。小表足够小,可被加载进Driver并通过Broadcast方法广播到各个Executor中。

2、解决逻辑

在小表join大表时如果产生数据倾斜,那么广播join可以直接规避掉此shuffle阶段。直接优化掉stage。并且广播join也是Spark Sql中最常用的优化方案。

3、案例演示

2.2.2中的PartitionTuning案例关闭了广播join,可以看到数据倾斜

spark-submit --master yarn --deploy-mode client --driver-memory 1g --num-executors 3 --executor-cores 2 --executor-memory 6g  --class com.atguigu.sparktuning.skew.SkewMapJoinTuning spark-tuning-1.0-SNAPSHOT-jar-with-dependencies.jar

4.2 拆分大key 打散大表 扩容小表

1、适用场景

适用于join时出现数据倾斜。

2、解决逻辑

1)将存在倾斜的表,根据抽样结果,拆分为倾斜key(skew表)和没有倾斜key(common)的两个数据集。

2)将skew表的key全部加上随机前缀,然后对另外一个不存在严重数据倾斜的数据集(old表)整体与随机前缀集作笛卡尔乘积(即将数据量扩大N倍,得到new表)。

3)打散的skew表  join 扩容的new表

union

       Common表  join old表

以下为打散大key和扩容小表的实现思路

1)打散大表:实际就是数据一进一出进行处理,对大key前拼上随机前缀实现打散

2)扩容小表:实际就是将DataFrame中每一条数据,转成一个集合,并往这个集合里循环添加10条数据,最后使用flatmap压平此集合,达到扩容的效果.

3、案例演示

spark-submit --master yarn --deploy-mode client --driver-memory 1g --num-executors 3 --executor-cores 2 --executor-memory 6g  --class com.atguigu.sparktuning.skew.SkewJoinTuning spark-tuning-1.0-SNAPSHOT-jar-with-dependencies.jar

4.3 开启AQE

1)spark.sql.adaptive.skewJoin.enabled  :是否开启倾斜join检测,如果开启了,那么会将倾斜的分区数据拆成多个分区,默认是开启的,但是得打开aqe。

2)spark.sql.adaptive.skewJoin.skewedPartitionFactor :默认值5,此参数用来判断分区数据量是否数据倾斜,当任务中最大数据量分区对应的数据量大于的分区中位数乘以此参数,并且也大于spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes参数,那么此任务是数据倾斜。

3)spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes :默认值256mb,用于判断是否数据倾斜

4)spark.sql.adaptive.advisoryPartitionSizeInBytes :此参数用来告诉spark进行拆分后推荐分区大小是多少。

spark-submit --master yarn --deploy-mode client --driver-memory 1g --num-executors 3 --executor-cores 4 --executor-memory 2g  --class com.atguigu.sparktuning.aqe.AqeOptimizingSkewJoin spark-tuning-1.0-SNAPSHOT-jar-with-dependencies.jar 

如果同时开启了spark.sql.adaptive.coalescePartitions.enabled动态合并分区功能,那么会先合并分区,再去判断倾斜,将动态合并分区打开后,重新执行:

spark-submit --master yarn --deploy-mode client --driver-memory 1g --num-executors 3 --executor-cores 4 --executor-memory 2g  --class com.atguigu.sparktuning.aqe.AqeOptimizingSkewJoin spark-tuning-1.0-SNAPSHOT-jar-with-dependencies.jar 

修改中位数的倍数为2重新执行

spark-submit --master yarn --deploy-mode client --driver-memory 1g --num-executors 3 --executor-cores 4 --executor-memory 2g  --class com.atguigu.sparktuning.aqe.AqeOptimizingSkewJoin

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/141434.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

链表相关部分OJ题

💓作者简介👏:在校大二迷茫大学生 💖个人主页🎉:小李很执着 💗系列专栏:Leetcode经典题 每日分享:人总是在离开一个地方后开始原谅它❣️❣️❣️———————————…

【Hadoop】MapReduce详解

🦄 个人主页——🎐开着拖拉机回家_大数据运维-CSDN博客 🎐✨🍁 🪁🍁🪁🍁🪁🍁🪁🍁 🪁🍁🪁&#x1f…

nodejs+vue+python+PHP+微信小程序-安卓-房产中介管理信息系统的设计与实现-计算机毕业设计

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…

华为笔记本电脑原装win10/win11系统恢复安装教程方法

华为电脑matebook 14原装Win11系统带F10智能还原 安装恢复教程: 1.安装方法有两种,一种是用PE安装,一种是华为工厂包安装(安装完成自带F10智能还原) 若没有原装系统文件,请在这里获取:https:…

EasyDarwin开源流媒体服务器

文章目录 前言一、EasyDarwin 简介二、EasyDarwin 主要功能特点三、安装部署四、推拉流测试1、进入控制页面2、推流测试3、拉流测试 前言 本文介绍一个十分实用的高性能开源 RTSP 流媒体服务器:EasyDarwin。 一、EasyDarwin 简介 EasyDarwin 是基于 go 语言研发&a…

海康Visionmaster-通讯管理:使用 Modbus TCP 通讯 协议与流程交互

使用 Modbus TCP 通讯协议与视觉通讯,当地址为 0000 的保持型寄存器(4x 寄存器)变为 1 时,触发视觉流程执行一次,同时视觉将地址为 0000 的寄存器复位(也即写为 0),视觉流程执行完成后,将结果数…

向量数据库的分类概况

保存和检索矢量数据的五种方法: 像 Pinecone 这样的纯矢量数据库 全文搜索数据库,例如 ElasticSearch 矢量库,如 Faiss、Annoy 和 Hnswlib 支持矢量的NoSQL 数据库,例如 MongoDB、Cosmos DB 和 Cassandra 支持矢量的SQL 数据库&am…

Redis键(Keys)

前言 在 Redis 中,键(Keys)是非常重要的概念,它们代表了存储在数据库中的数据的标识符。对键的有效管理和操作是使用 Redis 数据库的关键一环,它直接影响到数据的存取效率、系统的稳定性和开发的便利性。 本文将深入…

基于SpringBoot+Redis的前后端分离外卖项目-苍穹外卖(四)

编辑员工和分类模块功能开发 1. 编辑员工1.1 需求分析与设计1.1.1 产品原型1.1.2 接口设计 1.2 代码开发1.2.1 回显员工信息功能1.2.2 修改员工信息功能 1.3 功能测试 2. 分类模块功能开发2.1 需求分析与设计2.1.1 产品原型2.1.2 接口设计2.1.3 表设计 2.2 代码实现2.2.1 Mappe…

HarmonyOS开发(三):ArkTS基础

1、ArkTS演进 Mozilla创建了JS ---> Microsoft创建了TS ----> Huawei进一步推出ArkTS 从最初的基础逻辑交互(JS),到具备类型系统的高效工程开发(TS),再到融合声明式UI、多维状态管理等丰富的应用开发能力&…

【算法训练-链表 零】链表高频算法题看这一篇就够了

一轮的算法训练完成后,对相关的题目有了一个初步理解了,接下来进行专题训练,以下这些题目就是汇总的高频题目 题目题干直接给出对应博客链接,这里只给出简单思路、代码实现、复杂度分析 反转链表 依据难度等级分别为反转链表、…

Crypto | Affine password 第二届“奇安信”杯网络安全技能竞赛

题目描述: 明文经过仿射函数y3x9加密之后变为JYYHWVPIDCOZ,请对其进行解密,flag的格式为flag{明文的大写形式}。 密文: JYYHWVPIDCOZ解题思路: 1、使用在线网站直接破解或手工计算破解,获得flag。&#xf…

使用Nginx和uwsgi在自己的服务器上部署python的flask项目

Nginx 是一个高性能的 HTTP 和反向代理服务。其特点是占有内存少,并发能力强,事实上nginx的并发能力在同类型的网页服务器中表现较好。 Nginx 专为性能优化而开发,性能是其最重要的考量指标,实现上非常注重效率,能经受…

4.CentOS7安装MySQL5.7

CentOS7安装MySQL5.7 2023-11-13 小柴你能看到嘛 哔哩哔哩视频地址 https://www.bilibili.com/video/BV1jz4y1A7LS/?vd_source9ba3044ce322000939a31117d762b441 一.解压 tar -xvf mysql-5.7.26-linux-glibc2.12-x86_64.tar.gz1.在/usr/local解压 tar -xvf mysql-5.7.44-…

lc307.区域和检索 - 数组可修改

暴力解法 创建方法,通过switch-case判断所需要调用的方法。 public class RegionsAndSertches {public static void main(String[] args) {String[] str new String[]{"NumArray", "sumRange", "update", "sumRange"};i…

基于RK3568的跑步机方案

I 方案简介 一、跑步机的来历 跑步机是家庭及健身房常备的健身器材,而且是当今家庭健身器材中最简单的一种,是家庭健身器的最佳选择。1965年北欧芬兰唐特力诞生了全球第一台家用的跑步机,设计师根据传速带的原理改变而成。 二、…

人工智能基础_机器学习026_L1正则化_套索回归权重衰减梯度下降公式_原理解读---人工智能工作笔记0066

然后我们继续来看套索回归,也就是线性回归,加上了一个L1正则化对吧,然后我们看这里 L1正则化的公式是第二个,然后第一个是原来的线性回归,然后 最后一行紫色的,是J= J0+L1 对吧,其实就是上面两个公式加起来 然后我们再去看绿色的 第一行,其实就是原来线性回归的梯度下降公式…

Vatee万腾科技决策力的引领创新:Vatee数字化视野的崭新天地

在数字时代的激烈竞争中,Vatee万腾以其科技决策力的引领,开创了数字化视野的崭新天地。这并不仅仅是一场技术的飞跃,更是一次对未来的深刻洞察和引领创新的勇敢实践。 Vatee万腾的科技决策力不仅仅停留在数据分析和算法的运用,更是…

BlendTree动画混合算法详解

【混合本质】 如果了解骨骼动画就知道,某一时刻角色的Pose是通过两个邻近关键帧依次对所有骨骼插值而来,换句话说就是由两个关键帧混合而来。 那么可不可以由多个关键帧混合而来呢?当然可以。 更多的关键帧可以来自不同的动画片段&#xf…

nacos适配达梦数据库

一、下载源码 源码我直接下载gitee上nacos2.2.3的,具体链接:https://gitee.com/mirrors/Nacos/tree/2.2.3,具体如下图: 二、集成达梦数据库驱动 解压源码包,用idea打开源码,等idea和maven编译完成&#xff…