Tensorflow学习

一、处理数据的结构

案例代码如下:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np# create data
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1 + 0.3# 创建结构(一维结构)
Weights = tf.Variable(tf.random.uniform([1],-1.0,1.0))
biases = tf.Variable(tf.zeros([1]))y = Weights*x_data + biases# 计算丢失值
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)init =tf.initialize_all_variables()sess = tf.Session()
sess.run(init) #激活for step in range(201):sess.run(train)if step%20 ==0:print(step,sess.run(Weights),sess.run(biases))

 二、Session会话控制

案例代码如下:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as npmatrix1 = tf.constant([[3,3]])
matrix2 = tf.constant([[2],[2]])# 矩阵相乘
product = tf.matmul(matrix1,matrix2)#会话控制
sess = tf.Session()
result = sess.run(product)
print(result)
sess.close()

输出结果为:[[12]]

 三、Variable变量

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()state = tf.Variable(0,name = 'counter')
# print(state.name)
one = tf.constant(1)new_value = tf.add(state , one)update = tf.assign(state,new_value)init = tf.initialize_all_variables()# 必须使用Session激活
with tf.Session() as sess:sess.run(init)for _ in range(3):sess.run(update)print(sess.run(state))

四、placeholder传入值

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)output = tf.multiply(input1,input2)with tf.Session() as sess:print(sess.run(output,feed_dict = {input1:[7.],input2:[2.]}))

输出结果为:[14.]

五、激励函数

 将线性函数扭曲为非线性函数的一种函数

六、添加神经层

def add_layer(inputs,in_size,out_size,activation_function = None):Weights = tf.Variable(tf.random.uniform([in_size,out_size]))biases = tf.Variable(tf.zeros([1,out_size])) + 0.1# 相乘Wx_plus_b = tf.matmul(inputs,Weights) + biases# 激活if activation_function is None:outputs = Wx_plus_belse:outputs = activation_function(Wx_plus_b)return outputs

七、建立神经网络

案例代码如下:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as npdef add_layer(inputs,in_size,out_size,activation_function = None):Weights = tf.Variable(tf.random.uniform([in_size,out_size]))biases = tf.Variable(tf.zeros([1,out_size])) + 0.1# 相乘Wx_plus_b = tf.matmul(inputs,Weights) + biases# 激活if activation_function is None:outputs = Wx_plus_belse:outputs = activation_function(Wx_plus_b)return outputs
# 定义数据形式
x_data = np.linspace(-1,1,300)[:,np.newaxis] #增加数据维度
noise = np.random.normal(0,0.05,x_data.shape)
y_data = np.square(x_data) - 0.5 + noisexs = tf.placeholder(tf.float32,[None,1])
ys = tf.placeholder(tf.float32,[None,1])# 构建隐藏层
l1 = add_layer(xs,1,10,activation_function=tf.nn.relu)
# 构建输出层
predition = add_layer(l1,10,1,activation_function=None)# 计算误差
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - predition),reduction_indices=[1]))# 对误差进行更正
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)init = tf.initialize_all_variables()sess = tf.Session()sess.run(init)for i in range(1000):sess.run(train_step,feed_dict={xs:x_data,ys:y_data})if i%50 == 0:print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))

运行结果如下:

可观察到误差不断减小 ,说明预测准确性在不断增加

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/14046.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++模板

目录 函数模板隐式实例化显式实例化 类模板 下面是多种类型的交换函数 void Swap(int& left, int& right) {int temp left;left right;right temp; } void Swap(double& left, double& right) {double temp left;left right;right temp; } void Swap(ch…

Redis 哨兵 (sentinel)

是什么 官网理论:https://redis.io/docs/management/sentinel/ 吹哨人巡查监控后台 master 主机是否故障,如果故障了根据投票数自动将某一个从库转换为新主库,继续对外服务。 作用:无人值守运维 哨兵的作用: 1…

Pytorch深度学习-----神经网络的卷积操作

系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Co…

【状态估计】基于UKF、AUKF的电力系统负荷存在突变时的三相状态估计研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

SentencePiece android ndk编译

LLaMa等LLM语言模型一般使用SentencePiece tokenizer,在端侧部署需要编译和使用其c版本。 在安卓平台使用NDK编译 CMakeLists.txt需要进行一些修改: src/CMakeLists.txt如下位置加上log依赖,否则提示android log相关符号不存在。 此外&…

RNN架构解析——LSTM模型

目录 LSTMLSTM内部结构图 Bi-LSTM实现 优点和缺点 LSTM LSTM内部结构图 Bi-LSTM 实现 优点和缺点

解决IDEA的git非常缓慢方法

解决IDEA的git非常缓慢方法 xxxx\IDEA2021.1.3\IntelliJ IDEA 2021.1.3\bin

transformer代码注解

其中代码均来自李沐老师的动手学pytorch中。 class PositionWiseFFN(nn.Module):ffn_num_inputs 4ffn_num_hiddens 4ffn_num_outputs 8def __init__(self,ffn_num_inputs,ffn_num_hiddens,ffn_num_outputs):super(PositionWiseFFN,self).__init__()self.dense1 nn.Linear(ffn…

微服务项目,maven无法加载其他服务依赖

微服务项目,导入了工具类工程,但是一直报错,没有该类, 检查maven 这里的Maven的版本与idea版本不匹配可能是导致依赖加载失败的最重要原因 检查maven配置,我这是原来的maven,home 修改之后,就不报错了

Autosar通信实战系列02-CAN报文发送周期测试脚本开发及周期不准优化

本文框架 前言1. CAN发送报文的周期测试脚本开发2. 发送报文周期不准的可能原因及优化策略2.1 发送报文的控制逻辑2.2 送报文周期不准的可能原因及优化策略前言 在本系列笔者将结合工作中对通信实战部分的应用经验进一步介绍常用,包括但不限于通信各模块的开发教程,代码逻辑…

【ArcGIS Pro二次开发】(53):村规制表、制图【福建省】

这篇算是村规入库的一个延续。 村庄规划中有一些图纸是需要严格按照规范制图,或形成一定规范格式的。 这些图纸的制作基本算是机械式的工作,可以用工具来代替人工。 一、要实现的功能 如上图所示,在【村庄规划】组,新增了两个工…

【雕爷学编程】MicroPython动手做(16)——掌控板之图片图像显示3

知识点:什么是掌控板? 掌控板是一块普及STEAM创客教育、人工智能教育、机器人编程教育的开源智能硬件。它集成ESP-32高性能双核芯片,支持WiFi和蓝牙双模通信,可作为物联网节点,实现物联网应用。同时掌控板上集成了OLED…

vue3+vite——打测试包+正式包+本地预览打包后的文件——基础积累

最近在学习vue3vite的内容,发现vite和webpack类似,下面将区别及使用方法做一下记录: 1.vite添加环境配置文件 ... ├── src ... ├── .env # 通用环境变量配置 ├── .env.development …

机器学习:提取问题答案

模型BERT 任务:提取问题和答案 问题的起始位置和结束位置。 数据集 数据集 DRCDODSQA 先分词,然后tokenize 文章长度是不同的,bert的token的长度有限制,一般是512, self-attention的计算量是 O ( n 2 ) O(n^2) O(n…

opencv+ffmpeg环境(ubuntu)搭建全面详解

一.先讲讲opencv和ffmpeg之间的关系 1.1它们之间的联系 我们知道opencv主要是用来做图像处理的,但也包含视频解码的功能,而在视频解码部分的功能opencv是使用了ffmpeg。所以它们都是可以处理图像和视频的编解码,我个人感觉两个的侧重点不一…

无涯教程-jQuery - Selectable选择函数

选择能力功能可与JqueryUI中的交互一起使用。此功能可在任何DOM元素上启用选择能力功能。用光标绘制一个框以选择项目。按住Ctrl键可进行多个不相邻的选择。 Select able - 语法 $( "#selectable" ).selectable(); Select able - 示例 以下是一个简单的示例&…

目标检测应用场景—数据集【NO.14】行人跌倒测试

写在前面:数据集对应应用场景,不同的应用场景有不同的检测难点以及对应改进方法,本系列整理汇总领域内的数据集,方便大家下载数据集,若无法下载可关注后私信领取。关注免费领取整理好的数据集资料!今天分享…

DevOps(三)

CD(二) 1. 整体流程2. 环境准备1. jenkins安装2. 编译安装git3. docker安装4. docker-compose安装5. sonarqube安装6. harbor安装7. gitlab私服8. maven安装9. Nexus部署10. K8s部署3. 安装java及编写代码3.1 安装java3.2 安装IntelliJ IDEA3.3 安装tomcat3.4 安装maven3.5 c…

【LLM】大语言模型学习之LLAMA 2:Open Foundation and Fine-Tuned Chat Model

大语言模型学习之LLAMA 2:Open Foundation and Fine-Tuned Chat Model 快速了解预训练预训练模型评估微调有监督微调(SFT)人类反馈的强化学习(RLHF)RLHF结果局限性安全性预训练的安全性安全微调上手就干使用登记代码下载获取模型转换模型搭建Text-Generation-WebUI分发模型…

UE5、CesiumForUnreal加载无高度地形

文章目录 1.实现目标2.实现过程3.参考资料1.实现目标 在UE5中,CesiumForUnreal插件默认的地形都是带高度的,这里加载没有高度的地形,即大地高程为0,GIF动图如下: 2.实现过程 参考官方的教程,下载无高度的DEM,再切片加载到UE中。 (1)下载无高度地形DEM0。 在官方帖子…