【C++】模板初阶

目录

一,泛型编程

二,函数模板

1,函数模板概念

2,函数模板格式

3,函数模板的原理

4,函数模板的实例化

5,模板参数的匹配原则

三,类模板

1,类模板的定义格式

2,类模板的实例化

3,模板【栈】的用法


一,泛型编程

我们一般如何实现一个通用的交换函数呢?

void Swap(int& left, int& right)
{int temp = left;left = right;right = temp;
}
void Swap(double& left, double& right)
{double temp = left;left = right;right = temp;
}
void Swap(char& left, char& right)
{char temp = left;left = right;right = temp;
}

使用函数重载虽然可以实现,但是有一下几个不好的地方:

1,重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自         己增加对应的函数

2,代码的可维护性比较低,一个出错可能所有的重载均出错

那能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成代码呢?

答案是可以的!

如果在C++中,也能够存在这样一个模具,通过给这个模具中填充不同材料(类型),来获得不同材料的铸件 (即生成具体类型的代码),那将会节省许多头发。

巧的是前人早已将树栽好,我们只需在此乘凉。

泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。

二,函数模板

1,函数模板概念

函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本。

2,函数模板格式

template < typename T1,typename T2,.......,typename Tn >

返回值类型 函数名 ( 参数列表){ } 

拿交换函数举例:

template<typename T>
void Swap(T& left, T& right)
{T temp = left;left = right;right = temp;
}

注意:

typename 是用来定义模板参数关键字,也可以使用 class ( 切记:不能使用 struct 代替 class)

3,函数模板的原理

函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器 

在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。

比如:当用 double 类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理 double 类型的代码,对于字符类型也是如此。

4,函数模板的实例化

用不同类型的参数使用函数模板时,称为函数模板的实例化。

模板参数实例化分为:隐式实例化和显式实例化。

1,隐式实例化:让编译器根据实参推演模板参数的实际类型

template<class T>
T Add(const T& left, const T& right)
{return left + right;
}int main()
{int a1 = 10, a2 = 20;double d1 = 10.0, d2 = 20.0;Add(a1, a2);Add(d1, d2);Add(a1, (int)d1);return 0;
}

以上是没有问题的,但是要求各个参数的类型必须一致,否则会报错;

template<class T>
T Add(const T& left, const T& right)
{return left + right;
}int main()
{int a1 = 10, a2 = 20;double d1 = 10.0, d2 = 20.0;Add(a1,d1);return 0;
}

通过实参 a1 将 T 推演为 int,通过实参 d1将 T 推演为 double 类型,但模板参数列表中只有一个T, 编译器无法确定此处到底该将 T 确定为 int 或者 double 类型而报错。

再看一个例子:

int Add(const int& left, const int& right)
{return left + right;
}int main()
{int a1 = 10, a2 = 20;double d1 = 10.0, d2 = 20.0;Add(a1,d1);return 0;
}

像这种是可以运行的,因为编译器会进行类型的转换;

注意:

在模板中,编译器一般不会进行类型转换操作。

此时有两种处理方式:1,用户自己来强制转化 2,使用显式实例化

2,显式实例化:在函数名后的 < > 中指定模板参数的实际类型

template <class T>
T Add(const T& left, const T& right)
{return left + right;
}int main(void)
{int a = 10;double b = 20.0;// 显式实例化Add<int>(a, b);return 0;
}

如果类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功编译器将会报错。

5,模板参数的匹配原则

一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数

// 专门处理int的加法函数
int Add(int left, int right)
{cout << "int Add(int left, int right)" << endl;return 0;
}
// 通用加法函数
template<class T>
T Add(T left, T right)
{cout << "T Add(T left, T right)" << endl;return 0;
}
void Test()
{Add(1, 2); // 与非模板函数匹配,编译器不需要特化Add<int>(1, 2); // 调用编译器特化的Add版本
}
int main()
{Test();return 0;
}

对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模板产生出一个实例。

如果模板可以产生一个具有更好匹配的函数, 那么将选择模板

// 专门处理int的加法函数
int Add(int left, int right)
{cout << "int Add(int left, int right)" << endl;return left + right;
}
// 通用加法函数
template<class T1, class T2>
T1 Add(T1 left, T2 right)
{cout << "T1 Add(T1 left, T2 right)" << endl;return left + right;
}
void Test()
{Add(1, 2); // 与非函数模板类型完全匹配,不需要函数模板实例化Add(1, 2.0); // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函数
}
int main()
{Test();return 0;
}

模板函数不允许自动类型转换,但普通函数可以进行自动类型转换

三,类模板

1,类模板的定义格式

template<class T1, class T2, ..., class Tn>
class 类模板名
{// 类内成员定义
}; 

我们还是来看一下我们的老朋友【栈】;

// 动态顺序表
// 注意:Vector不是具体的类,是编译器根据被实例化的类型生成具体类的模具
template<class T>
class Vector
{
public:Vector(size_t capacity = 10): _pData(new T[capacity]), _size(0), _capacity(capacity){}// 使用析构函数演示:在类中声明,在类外定义。~Vector();void PushBack(const T& data);void PopBack();// ...size_t Size() { return _size; }T& operator[](size_t pos){assert(pos < _size);return _pData[pos];}private:T* _pData;size_t _size;size_t _capacity;
};//注意:类模板中函数放在类外进行定义时,需要加模板参数列表
template <class T>
Vector<T>::~Vector()
{if (_pData)delete[] _pData;_size = _capacity = 0;
}

这里需要的是类模板中函数放在类外进行定义时,需要加模板参数列表 template <class T>

2,类模板的实例化

类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<> 中即可,类模板名字不是真正的类,而实例化的结果才是真正的类。

// Vector类名,Vector<int>才是类型
Vector<int> s1;
Vector<double> s2;

3,模板【栈】—【vector】的用法

兄弟们看我讲了这么多,可能还不会正真的用法,我来给大家示范一下大家就会觉得很香了;

#include<iostream>
#include<vector>
using namespace std;int main()
{vector<int> vec;for (int i = 0; i < 10; i++)vec.push_back(i);for (auto i : vec)cout << i << " " << endl;return 0;
}

包个头文件就可以直接使用了,【栈】对应的是【vector】;

是不是很方便;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/139374.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

二叉树的遍历(先序,中序,后序,层序)

目录 1.先序遍历1.代码实现 2.中序遍历1.代码实现 3.后序遍历1.代码实现 4.遍历算法的应用5.层序遍历1.算法思想2.代码实现 6.由遍历序列构造二叉树 1.先序遍历 根左右。 1.代码实现 若二叉树为空&#xff0c;则什么也不做; 若二叉树非空: ①访问根结点; ②先序遍历左子树; ③先…

在以TAB为首地址的字存储区中存放有N个无符号数,试统计低3位全为1的数的个数(个数设为≤9),并显示。

;默认认采用ML6.11汇编程序 DATAS SEGMENT;此处输入数据段代码TAB DW -7,7,15,20,21N($-TAB)/2;G DW 0 DATAS ENDS STACKS SEGMENT;此处处输入堆栈段代码; DB 200 DUP(0) STACKS ENDS CODES SEGMENTASSUME CS:CODES,DS: DATAS, SS:STACKS START:MOV AX, DATASMOV DS,AX;此处输入…

基于STM32单片机抢答器设计

**单片机设计介绍&#xff0c; 基于STM32单片机抢答器设计-Proteus仿真 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于STM32单片机的抢答器设计可以用于教育和培训场景中的抢答游戏或考试环节。以下是一个基本的介绍设计步骤…

JavaScript从入门到精通系列第三十四篇:基于JavaScript实现邮件正则

文章目录 一&#xff1a;电子邮件正则 1&#xff1a;电子邮件规则 2&#xff1a;编写代码校验 大神链接&#xff1a;作者有幸结识技术大神孙哥为好友&#xff0c;获益匪浅。现在把孙哥视频分享给大家。 孙哥链接&#xff1a;孙哥个人主页 作者简介&#xff1a;一个颜值99分&…

IDEA 关闭SpringBoot启动Logo/图标

一、环境 1、SpringBoot 2.6.4 Maven POM格式 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.6.4</version><relativePath/></parent> 2、IDE…

Linux arm64异常简介和系统调用过程

文章目录 一、异常简介1.1 Exception levels1.2 异常类型 二、系统调用简介2.1 SVC指令2.2 VBAR2.3 系统调用保存现场2.4 系统调用返回 三、Linux 内核分析参考资料 一、异常简介 在ARM64体系架构中&#xff0c;异常是处理器在执行指令时可能遇到的不寻常情况或事件。这些异常…

链表经典OJ题(链表回文结构,链表带环,链表的深拷贝)

目录 前言 1.反转一个单链表。 2. 给定一个带有头结点 head 的非空单链表&#xff0c;返回链表的中间结点。 3.链表的回文结构。 4.链表带环问题&#xff08;*****&#xff09; 4.1是否带环 4.2 入环的节点 5.随机链表的复制&#xff08;链表的深拷贝&#xff09; 前言…

Redis的三种特殊数据类型

文章目录 一、Redis geospatial 地理位置二、Redis Hyperloglog 基数统计的算法三、Redis Bitmaps 位存储&#xff08;0、1&#xff09;总结 一、Redis geospatial 地理位置 1.geoadd&#xff1a;将指定的地理空间位置&#xff08;纬度、经度、名称&#xff09;添加到指定的ke…

人工智能-卷积神经网络(LeNet)

为了能够应用softmax回归和多层感知机&#xff0c;我们首先将每个大小为\(28\times28\)的图像展平为一个784维的固定长度的一维向量&#xff0c;然后用全连接层对其进行处理。 而现在&#xff0c;我们已经掌握了卷积层的处理方法&#xff0c;我们可以在图像中保留空间结构。 同…

Dubbo从入门到上天系列第五篇:Dubbo3与JDK17不兼容问题展示

文章目录 一&#xff1a;JDK 与 Dubbo版本对应问题说明 1&#xff1a;问题1 2&#xff1a;问题2 二&#xff1a;Spring与JDK版本对应关系 1&#xff1a;对应关系详图 2&#xff1a;JDK与Major对应关系图 大神链接&#xff1a;作者有幸结识技术大神孙哥为好友&#xff0c…

[ Linux Busybox ] nandwrite 命令解析

文章目录 相关结构体nandwrite 函数实现nandwrite 实现流程图 文件路径&#xff1a;busybox-1.20.2/miscutils/nandwrite.c 相关结构体 MTD 相关信息结构体 struct mtd_info_user {__u8 type; // MTD 设备类型__u32 flags; // MTD设备属性标志__u32…

基于STM32控制直流电机加减速正反转仿真设计

**单片机设计介绍&#xff0c;基于STM32控制直流电机加减速正反转仿真设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 本设计由STM32F103、L298N电机驱动电路、按键电路组成。通过按键可以控制电机&#xff0c;正转、反转、加…

商越科技:渗透测试保障平台安全,推动线上采购高效运转

商越科技是数字化采购解决方案提供商&#xff0c;在同赛道企业中始终保持前列。商越科技通过自主研发的智能采购中台、SaaS应用及运营服务等为企业搭建专属的互联网采购平台&#xff0c;帮助企业实现采购数字化以及智能化转型&#xff0c;提高工作效率、降低采购成本。 打造数字…

Linux基础开发工具之调试器gdb

文章目录 1.编译成的可调试的debug版本1.1gcc test.c -o testdebug -g1.2readelf -S testdebug | grep -i debug 2.调试指令2.0quit退出2.1list/l/l 数字: 显示代码2.2run/r运行2.3断点相关1. break num/b num: 设置2. info b: 查看3. d index: 删除4. n: F10逐过程5. p 变量名…

Java必刷入门递归题×5(内附详细递归解析图)

目录 1.求N的阶乘 2.求12...N的和 3.顺序打印数字的每一位 4.求数字的每一位之和 5.求斐波拉契数列 1.求N的阶乘 &#xff08;1&#xff09;解析题目意思 比如求5的阶乘&#xff0c;符号表示就是5&#xff01;&#xff1b;所以5&#xff01;5*4*3*2*1我们下面使用简单的…

SSM图书管理系统开发mysql数据库web结构java编程计算机网页源码eclipse项目

一、源码特点 SSM 图书管理系统是一套完善的信息系统&#xff0c;结合springboot框架和bootstrap完成本系统&#xff0c;对理解JSP java编程开发语言有帮助系统采用SSM框架&#xff08;MVC模式开发&#xff09;&#xff0c;系统具有完整的源代码和 数据库&#xff0c;系统主要…

Linux-Docker的基础命令和部署code-server

1.安装docker 1.安装需要的安装包 yum install -y yum-utils2.设置镜像仓库 yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo3.安装docker yum install docker-ce docker-ce-cli containerd.io docker-buildx-plugin do…

多彩的树 -----题解(状压dp + 容斥原理)

目录 多彩的树 题目描述 输入描述: 输出描述: 输入 输出 思路解析&#xff1a; 代码实现&#xff1a; 多彩的树 时间限制&#xff1a;C/C 5秒&#xff0c;其他语言10秒 空间限制&#xff1a;C/C 262144K&#xff0c;其他语言524288K 64bit IO Format: %lld 题目描述 …

【Springboot】Vue3-Springboot引入JWT实现登录校验以及常见的错误解决方案

文章目录 前言一、JWT简单介绍二、token校验设计思路三、使用步骤Springboot部署JWT引入依赖&#xff1a;创建登录实体类后端&#xff1a;LoginController.java路由守卫函数 四、问题 前言 项目版本&#xff1a; 后端&#xff1a; Springboot 2.7、 Mybatis-plus、Maven 3.8.1…

C/C++轻量级并发TCP服务器框架Zinx-游戏服务器开发004:游戏核心消息处理 - 玩家类的实现

文章目录 0 代码仓库1 需求2 AOI设计2.1 AOI算法简介2.2 AOI数据结构及实现2.2.1 玩家2.2.2 网格对象2.2.3 游戏世界矩形2.2.4 获取周围玩家的实现2.2.5 代码测试 2.3 GameRole结合AOI创建玩家2.3.1 创建游戏世界全局对象-GameRole继承AOIWorld的Player2.3.2 把玩家到游戏世界的…