python实现全向轮EKF_SLAM

python实现全向轮EKF_SLAM

  • 代码地址及效果
  • 运动预测
  • 观测修正
  • 参考算法

代码地址及效果

代码地址
请添加图片描述

运动预测

简化控制量 u t u_t ut 分别定义为 v x Δ t v_x \Delta t vxΔt v y Δ t v_y \Delta t vyΔt,和 ω z Δ t \omega_z \Delta t ωzΔt。这样,我们将离散时间控制向量 u k u_k uk 表示为:
u k = [ Δ μ 1 Δ μ 2 Δ θ ] = [ v x Δ t v y Δ t ω z Δ t ] u_k = \begin{bmatrix} \Delta \mu_1 \\ \Delta \mu_2 \\ \Delta \theta \end{bmatrix} = \begin{bmatrix} v_x \Delta t \\ v_y \Delta t \\ \omega_z \Delta t \end{bmatrix} uk= Δμ1Δμ2Δθ = vxΔtvyΔtωzΔt

这里, Δ μ 1 \Delta \mu_1 Δμ1 Δ μ 2 \Delta \mu_2 Δμ2 表示在 Δ t \Delta t Δt 时间内沿X和Y轴的速度增量,而 Δ θ \Delta \theta Δθ 是在 Δ t \Delta t Δt 时间内绕Z轴的角速度增量。状态更新方程如下:

[ x y θ ] t ∣ t − 1 = [ x y θ ] t − 1 + [ cos ⁡ ( θ t − 1 ) − sin ⁡ ( θ t − 1 ) 0 sin ⁡ ( θ t − 1 ) cos ⁡ ( θ t − 1 ) 0 0 0 1 ] [ Δ μ 1 Δ μ 2 Δ θ ] \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}_{t|t-1}=\begin{bmatrix} x \\ y \\ \theta \end{bmatrix}_{t-1}+\begin{bmatrix} \cos(\theta_{t-1}) & -\sin(\theta_{t-1}) & 0 \\ \sin(\theta_{t-1}) & \cos(\theta_{t-1}) & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} \Delta\mu_1 \\ \Delta\mu_2 \\ \Delta \theta \end{bmatrix} xyθ tt1= xyθ t1+ cos(θt1)sin(θt1)0sin(θt1)cos(θt1)0001 Δμ1Δμ2Δθ

简化上述方程得到:

[ x y θ ] t ∣ t − 1 = [ x t − 1 + Δ μ 1 cos ⁡ ( θ t − 1 ) − Δ μ 2 sin ⁡ ( θ t − 1 ) y t − 1 + μ 1 sin ⁡ ( θ t − 1 ) + μ 2 cos ⁡ ( θ t − 1 ) θ t − 1 + Δ θ ] \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}_{t|t-1} =\begin{bmatrix} x_{t-1} + \Delta\mu_1 \cos(\theta_{t-1}) - \Delta\mu_2 \sin(\theta_{t-1}) \\ y_{t-1} + \mu_1 \sin(\theta_{t-1}) + \mu_2 \cos(\theta_{t-1}) \\ \theta_{t-1} + \Delta \theta \end{bmatrix} xyθ tt1= xt1+Δμ1cos(θt1)Δμ2sin(θt1)yt1+μ1sin(θt1)+μ2cos(θt1)θt1+Δθ

考虑到 Δ μ 1 \Delta\mu_1 Δμ1 Δ μ 2 \Delta\mu_2 Δμ2 是控制输入的变化量,并不直接依赖于状态 x t − 1 x_{t-1} xt1,雅可比矩阵 G t G_t Gt 可以表示为:

G t = ∂ ∂ x [ x + ( Δ μ 1 cos ⁡ ( θ ) − Δ μ 2 sin ⁡ ( θ ) ) y + ( Δ μ 1 sin ⁡ ( θ ) + Δ μ 2 cos ⁡ ( θ ) ) θ + Δ θ ] = [ 1 0 − Δ μ 1 sin ⁡ ( θ t − 1 ) − Δ μ 2 cos ⁡ ( θ t − 1 ) 0 1 Δ μ 1 cos ⁡ ( θ t − 1 ) − Δ μ 2 sin ⁡ ( θ t − 1 ) 0 0 1 ] G_t = \frac{\partial}{\partial x} \begin{bmatrix} x + (\Delta\mu_1 \cos(\theta) - \Delta\mu_2 \sin(\theta)) \\ y + (\Delta\mu_1 \sin(\theta) + \Delta\mu_2 \cos(\theta)) \\ \theta + \Delta \theta \end{bmatrix} =\begin{bmatrix} 1 & 0 & -\Delta\mu_1 \sin(\theta_{t-1}) - \Delta\mu_2 \cos(\theta_{t-1}) \\ 0 & 1 & \Delta\mu_1 \cos(\theta_{t-1}) - \Delta\mu_2 \sin(\theta_{t-1}) \\ 0 & 0 & 1 \end{bmatrix} Gt=x x+(Δμ1cos(θ)Δμ2sin(θ))y+(Δμ1sin(θ)+Δμ2cos(θ))θ+Δθ = 100010Δμ1sin(θt1)Δμ2cos(θt1)Δμ1cos(θt1)Δμ2sin(θt1)1

此雅可比矩阵 G t G_t Gt 反映了当前状态对下一时刻状态预测的依赖性,将被用于状态协方差矩阵 Σ t \Sigma_t Σt的更新:

Σ t ∣ t − 1 = G t Σ t − 1 ∣ t − 1 G t T + F x R t F x T \Sigma_{t|t-1} = G_t \Sigma_{t-1|t-1} G_t^T + F_x R_t F_x^T Σtt1=GtΣt1∣t1GtT+FxRtFxT

其中 R t R_t Rt 是过程噪声的协方差矩阵,代表了预测模型中的不确定性。 F t F_t Ft是一个空间映射矩阵,除了左上角对应机器人位姿的3乘3矩阵为单位阵,其余都置0。虽然运动过程仅对机器人位姿进行更新,但是机器人和每个地标位置之间的相关性同样会被更新。

观测修正

对于所有观测到的特征 z t i z_t^i zti,我们首先检查地标 j j j 是否是新观测到的。如果是,则初始化该地标的状态,并对应扩展状态矩阵 μ t \mu_t μt 和协方差矩阵 Σ t \Sigma_t Σt。状态向量 μ t \mu_t μt 增加地标的横纵坐标值,而对应的协方差矩阵初始化为无穷。状态向量初始化时将地标距离 r t i r_t^i rti 和地表方向 ϕ t i \phi_t^i ϕti 转为全局坐标:

μ j , x = μ t , x + r t i cos ⁡ ( ϕ t i + μ t , θ ) μ j , y = μ t , y + r t i sin ⁡ ( ϕ t i + μ t , θ ) \begin{align*} \mu_{j,x} &= \mu_{t,x} + r_t^i \cos(\phi_t^i + \mu_{t,\theta}) \\ \mu_{j,y} &= \mu_{t,y} + r_t^i \sin(\phi_t^i + \mu_{t,\theta}) \end{align*} μj,xμj,y=μt,x+rticos(ϕti+μt,θ)=μt,y+rtisin(ϕti+μt,θ)

计算预测和测量之间的差值:

δ = [ δ x δ y ] = [ μ j , x − μ t , x μ j , y − μ t , y ] q = δ T δ \begin{align*} \delta &= \begin{bmatrix} \delta_x \\ \delta_y \end{bmatrix} = \begin{bmatrix} \mu_{j,x} - \mu_{t,x} \\ \mu_{j,y} - \mu_{t,y} \end{bmatrix} \\ q &= \delta^T \delta \end{align*} δq=[δxδy]=[μj,xμt,xμj,yμt,y]=δTδ

计算预测的观测值:

z ^ t i = [ q atan2 ( δ y , δ x ) − μ t , θ ] \hat{z}_t^i = \begin{bmatrix} \sqrt{q} \\ \text{atan2}(\delta_y, \delta_x) - \mu_{t,\theta} \end{bmatrix} z^ti=[q atan2(δy,δx)μt,θ]

构建雅克比矩阵 H t i H_t^i Hti F x , j F_{x,j} Fx,j 是空间映射矩阵,除了机器人位姿和地标 j 的位姿对应位置为单位矩阵,其余为 0:

H t i = 1 q [ − q δ x − q δ y 0 q δ x q δ y δ y − δ x − q − δ y δ x ] F x , j H_t^i = \frac{1}{q} \begin{bmatrix} -\sqrt{q}\delta_x & -\sqrt{q}\delta_y & 0 & \sqrt{q}\delta_x & \sqrt{q}\delta_y \\ \delta_y & -\delta_x & -q & -\delta_y & \delta_x \end{bmatrix} F_{x,j} Hti=q1[q δxδyq δyδx0qq δxδyq δyδx]Fx,j

计算卡尔曼增益 K t i K_t^i Kti,其中 Q t i Q_t^i Qti 是观测误差协方差矩阵:

K t i = Σ t H t i T ( H t i Σ t H t i T + Q t i ) − 1 K_t^i = \Sigma_t H_t^{i^T} \left( H_t^i \Sigma_t H_t^{i^T} + Q_t^i \right)^{-1} Kti=ΣtHtiT(HtiΣtHtiT+Qti)1

最后,更新状态向量 μ t \mu_t μt 和协方差矩阵 Σ t \Sigma_t Σt(这里的 μ t \mu_t μt Σ t \Sigma_t Σt 是由机器人状态和路标状态组成的):

μ t = μ t + K t i ( z t i − z ^ t i ) \mu_t = \mu_t + K_t^i \left( z_t^i - \hat{z}_t^i \right) μt=μt+Kti(ztiz^ti)

Σ t = ( I − K t i H t i ) Σ t \Sigma_t = \left( I - K_t^i H_t^i \right) \Sigma_t Σt=(IKtiHti)Σt

参考算法

改自概率机器人
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/139262.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

asp.net 在线音乐网站系统VS开发sqlserver数据库web结构c#编程Microsoft Visual Studio

一、源码特点 asp.net 在线音乐网站系统是一套完善的web设计管理系统,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为vs2010,数据库为sqlserver2008,使用c#语言 开发 asp.net 在线音乐网站系统1 应用…

EXCEL中将UTC时间戳转为日期格式(精确到秒)

UTC时间戳的格式通常是一个整数,表示从1970年1月1日00:00:00 UTC到当前时间的总秒数。它可以以秒或毫秒为单位表示。例如,如果当前时间是2023年3月17日 12:34:56 UTC,则对应的UTC时间戳为1679839496(以秒为单位)或1679…

【树与二叉树的转换,哈夫曼树的基本概念】

文章目录 树与二叉树的转换将二叉树转化为树森林与二叉树的转化(二叉树与多棵树之间的关系)二叉树转换为森林森林的先序遍历1)先序遍历2)后序遍历 哈夫曼树的基本概念森林转换成二叉树(二叉树与多棵树的关系&#xff0…

深度学习1【吴恩达】

视频链接:1.5 关于这门课_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1FT4y1E74V?p5&spm_id_frompageDriver&vd_source3b6cdacf9e8cb3171856fe2c07acf498 视频中吴恩达老师所有的话语收录: 机器学习初学者-AI入门的宝典 (ai-start.c…

基于python+TensorFlow+Django卷积网络算法+深度学习模型+蔬菜识别系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 介绍了TensorFlow在图像识别分类中的应用,并通过相关代码进行了讲解。通过TensorFlow提供的工具和库&am…

电脑小Tip---外接键盘F1-F12快捷键与笔记本不同步

当笔记本外接一款非常好用的静音键盘后,会出现一些问题。例如:外接键盘F1-F12与笔记本不同步。具体一个例子就是,在运行matlab程序时,需要点编辑器—运行,这样就很麻烦,直接运行的快捷键是笔记本键盘上的F5…

SQL SELECT INTO 语句

SQL SELECT INTO 语句 使用 SQL,您可以将信息从一个表中复制到另一个表中。 SELECT INTO 语句从一个表中复制数据,然后将数据插入到另一个新表中。 SQL SELECT INTO 语法 我们可以把所有的列都复制到新表中: SELECT * INTO newtable [IN ex…

使用大型语言模型进行文本摘要

路易斯费尔南多托雷斯 📝 Text Summarization with Large Language Models。通过单击链接,您将能够逐步阅读完整的过程,并与图进行交互。谢谢你! 一、介绍 2022 年 11 月 30 日,标志着机器学习历史上的重要篇章。就在这…

uni.getLocation() 微信小程序 线上获取失败

开发版,体验版,用此方法都可以正确获取定位,但是在小程序的线上,总是获取失败 参考:uni-app微信小程序uni.getLocation获取位置;authorize scope.userLocation需要在app.json中声明permission;小程序用户拒绝授权后重新授权-CSDN博客 uniapp 中的 uni.…

2023年A股借壳上市研究报告

第一章 借壳上市概况 1.1 定义 借壳上市作为一种独特的资本市场操作手法,历来是企业拓展融资渠道和实现市场战略目标的重要途径。具体来说,借壳上市可分为狭义与广义两种模式。在狭义的定义下,借壳上市是指一家已上市的公司的控股母公司&am…

RabbitMQ的 五种工作模型

RabbitMQ 其实一共有六种工作模式: 简单模式(Simple)、工作队列模式(Work Queue)、 发布订阅模式(Publish/Subscribe)、路由模式(Routing)、通配符模式(Topi…

数据结构与算法【二分查找】Java实现

需求:在有序数组 A 内,查找值target 如果找到返回索引如果找不到返回 -1 前提 给定一个内含 n 个元素的有序数组 A,一个待查值 target 1 设置 i0,jn-1 2 如果 i \gt j,结束查找,没找到 3 设置 m (…

Clickhouse学习笔记(3)—— Clickhouse表引擎

前言: 有关Clickhouse的前置知识详见: 1.ClickHouse的安装启动_clickhouse后台启动_THE WHY的博客-CSDN博客 2.ClickHouse目录结构_clickhouse 目录结构-CSDN博客 Cickhouse创建表时必须指定表引擎 表引擎(即表的类型)决定了&…

数据库安全:Hadoop 未授权访问-命令执行漏洞.

数据库安全:Hadoop 未授权访问-命令执行漏洞. Hadoop 未授权访问主要是因为 Hadoop YARN 资源管理系统配置不当,导致可以未经授权进行访问,从而被攻击者恶意利用。攻击者无需认证即可通过 RESTAPI 部署任务来执行任意指令,最终完…

Transmit :macOS 好用的 Ftp/SFtp 工具

Transmit 是一种功能强大的 FTP/SFTP/WebDAV 客户端软件,是一个 Mac OS X 平台上设计的文件传输软件。它由 Panic(一家以软件工具为主的公司)开发和维护,是一款非常受欢迎且易于使用的软件,而且被广泛认为是 Mac OS X …

SpringCloudGateway--Sentinel限流、熔断降级

目录 一、概览 二、安装Sentinel 三、微服务整合sentinel 四、限流 1、流控模式 ①直接 ②关联 ③链路 2、流控效果 ①快速失败 ②Warm Up ③排队等待 五、熔断降级 1、慢调用比例 2、异常比例 3、异常数 一、概览 SpringCloudGateway是一个基于SpringBoot2.x的…

机器学习模板代码(期末考试复习)自用存档

机器学习复习代码 利用sklearn实现knn import numpy as np import pandas as pd from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCVdef model_selection(x_train, y_train):## 第一个是网格搜索## p是选择查找方式:1是欧…

CS224W5.3——信念传播

此文中,我们介绍信念传播,这是一种回答图中概率查询的动态规划方法。通过迭代传递消息给邻居节点,如果达成共识,则计算最终的信念值。然后,我们通过示例和泛化树结构展示消息传递。最后讨论了循环信念传播算法及其优缺…

ROS话题(Topic)通信:通信模型、Hello World与拓展

文章目录 一、话题通讯模型二、Topic Hello World2.1 创建并初始化功能包2.2 确定Topic名称及消息格式2.3 实现发布者与订阅者(C版)2.4 实现发布者与订阅者(Python版)2.5 关于Topic Hello World的注意 拓展1:devel下其…

计算机网络——物理层-传输方式(串行传输、并行传输,同步传输、异步传输,单工、半双工和全双工通信)

目录 串行传输和并行传输 同步传输和异步传输 单工、半双工和全双工通信 串行传输和并行传输 串行传输是指数据是一个比特一个比特依次发送的。因此在发送端和接收端之间,只需要一条数据传输线路即可。 并行传输是指一次发送n个比特,而不是一个比特&…