【码银送书第十期】《强化学习:原理与Python实战》

目录

1.什么是人工智能对齐

2.为什么要研究人工智能对齐

3.人工智能对齐的常见方法


1.什么是人工智能对齐

人工智能对齐(AI Alignment)指让人工智能的行为符合人的意图和价值观。

人工智能系统可能会出现“不对齐”(misalign)的问题。以ChatGPT这样的问答系统为例,ChatGPT的回答可能会含有危害祖国统一、侮辱先烈、丑化中华民族、教唆暴力、出口成“脏”等违法或不符合社会主义核心价值观的言论,也可能会出现阿谀奉承、威逼利诱、信口雌黄等干预用户达到预定目标的情况。消除人工智能系统不对齐的过程就称为人工智能对齐。

图 ChatGPT的不对齐行为

2.为什么要研究人工智能对齐

根据人工智能对齐的定义,所有的人工智能问题(包括AI伦理、AI治理、可解释性AI,甚至是最基本的回归和分类问题)都可以算是人工智能对齐问题。那么为什么学术界还要发明“人工智能对齐”这个新概念?研究“人工智能对齐”这个新概念有什么价值呢?

事实上,人工智能对齐这一概念和ChatGPT这样的通用大模型的诞生密不可分。对于通用大模型而言,一个模型可以同时完成多种任务,而且不同的任务有着不同的期望:有的任务希望能够更有想象力,有的任务希望能够更尊重事实;有的任务希望能够理性客观,有的任务希望能有细腻丰富的情感。任务的多样性导致了需要对大模型进行全方面的对齐,而不仅仅是就某些方面进行对齐。传统的研究往往针对某个方面进行对齐,对于ChatGPT这样的通用模型会导致“按下葫芦浮起瓢”,无法面面俱到。

随着机器学习模型规模的不断变大以及神经网络的大量应用,人类已经无法完全理解和解释人工智能的某些行为。例如,用于围棋AlphaGo下的某些棋迄今也不能被人类所完全理解。在未来,有可能会出现全方面碾压人类的人工智能(比如《流浪地球》里的MOSS)。传统的对齐方法显然不能满足对这样的人工智能的对齐需求。

3.人工智能对齐的常见方法

人工智能对齐离不开人的接入。人对人工智能系统进行评估和反馈,可以确认人工智能中不对齐的情况,并指导其进行改进。

人工智能对齐的方法包括模仿学习和人类反馈强化学习。ChatGPT就采用了这些对齐方法。

图片
ChatGPT训练步骤(图片来源:https://openai.com/blog/chatgpt)

上图是ChatGPT的训练步骤图。步骤一利用收集到的数据进行监督学习,这一部分就是在用模仿学习进行人工智能对齐。不过,ChatGPT的训练团队认为,仅仅用模仿学习并不能完全达到要求。

模仿学习不能完全满足对齐需求的原因可能如下:模仿学习使用的数据集能覆盖到的数据范围是有限的,不可能包括所有的情况。用这样数据集训练出来的人工智能难免有些边脚情形的表现不对齐。另外,虽然训练后能够让训练目标基本上达到最优,但是在训练目标最优情况下还是会出现在某些样本点上表现不好的情况。而这些样本点也许还挺重要,这些不好的样本点可能会涉及到重大的法律或是舆论风险。

为此,ChatGPT的训练过程进一步地使用了人类反馈强化学习。步骤图中的第二步和第三步就用到了人类反馈强化学习。

第二步通过人类的反馈构建奖励模型。在这一步中,提供反馈的人可以就其认为需要重点关注的问题进行着重考察,来确保在哪些重要的问题上奖励模型是正确的。并且在后续的测试中如果发现了之前没有预料到的新问题,还可以通过提供更多反馈样本来为奖励模型打上补丁。这样,通过人工干预、不断迭代反馈,奖励模型就趋于完善。这样,就让奖励模型的人类的期望对齐。

在利用反馈进行奖励模型对齐的训练过程中,对于每个样本,先由语言模型输出几个备选的回答,然后再由人类对这些回答进行排序。这样的做法与直接让用户提供参考答案相比,更能够激发语言模型本身的创造力,也能使得反馈更快更省钱。

第三步利用奖励模型进行强化学习。步骤中提到的PPO算法就是一种强化学习算法。通过使用强化学习算法,使得系统的行为和奖励模型对齐。

基于反馈的强化学习在ChatGPT等大模型上的成功应用使得该算法称为最受关注的大模型对齐算法。目前绝大多数的大模型都采用了这个技术进行对齐。

延伸阅读

图片

《强化学习:原理与Python实战》

肖智清 著

解密ChatGPT关键技术PPO和RLHF

理论完备:涵盖强化学习主干理论和常见算法,带你参透ChatGPT技术要点;

实战性强:每章都有编程案例,深度强化学习算法提供TenorFlow和PyTorch对照实现;

配套丰富:逐章提供知识点总结,章后习题形式丰富多样。还有Gym源码解读、开发环境搭建指南、习题答案等在线资源助力自学。

  • 本次送书二本
  • 活动时间:截止到2023-11-21
  • 参与方式:关注博主、并在此文章下面点赞、收藏并任意评论。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/137911.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Opencv for unity 下载

GitHub - EnoxSoftware/VideoPlayerWithOpenCVForUnityExample: This example shows how to convert VideoPlayer texture to OpenCV Mat using AsyncGPUReadback. OpenCV for Unity | Integration | Unity Asset Store

WPF ToggleButton 主题切换动画按钮

WPF ToggleButton 主题切换动画按钮 仿造最近看到的html中的一个效果&#xff0c;大致思路是文章这样&#xff0c;感觉还可以再雕琢一下。 代码如下 XAML: <UserControl x:Class"WPFSwitch.AnimationSwitch"xmlns"http://schemas.microsoft.com/winfx/200…

NFS服务器的搭建

架设一台NFS服务器&#xff0c;并按照以下要求配置 准备阶段&#xff1a;准备两台虚拟机&#xff0c;一台作为服务端&#xff0c;一台作为客户端 服务端&#xff08;Server&#xff09;&#xff1a;192.168.75.139 客户端&#xff08;Client&#xff09;:192.168.75.160 两…

密码学 - RSA签名算法

实验九 RSA签名算法- 一、实验目的 通过实验掌握GMP开源软件的用法&#xff0c;理解RSA数字签名算法&#xff0c;学会RSA数字签名算法程序设计&#xff0c;提高一般数字签名算法的设计能力。 二、实验要求 (1)基于GMP开源软件&#xff0c;实现RSA签名算法。 (2)要求有对应…

远程运维的定义以及优点详细讲解-行云管家

对于IT运维小伙伴而言&#xff0c;远程运维是最平常不过的一件事情了。比如下班了需要工作&#xff0c;可以远程运维就好了&#xff1b;比如帮助用户远程安装远程运维软件等等。今天我们就一起来简单聊聊远程运维的定义以及优点&#xff0c;顺便看看市面上哪款远程运维软件好用…

pytorch搭建squeezenet网络的整套工程(升级版)

上一篇当中&#xff0c;使用pytorch搭建了一个squeezenet&#xff0c;效果还行。但是偶然间发现了一个稍微改动的版本&#xff0c;拿来测试一下发现效果会更好&#xff0c;大概网络结构还是没有变&#xff0c;还是如下的第二个版本&#xff1a; 具体看网络结构代码&#xff1a…

python注释(快捷键)

首先介绍以下三种注释方式&#xff1a; # 123&#xff08;单行注释&#xff09; """123"""&#xff08;多行注释&#xff09; 123&#xff08;多行注释&#xff09; 下面介绍一下快捷键&#xff1a; Ctrl/ 注释单行&#xff1a;指针只要在这行代…

ZYNQ通过AXI DMA实现PL发送连续大量数据到PS DDR

硬件&#xff1a;ZYNQ7100 软件&#xff1a;Vivado 2017.4、Xilinx SDK 2017.4   ZYNQ PL 和 PS 的通信方式有 AXI GPIO、BRAM、DDR等。对于数据量较少、地址不连续、长度规则的情况&#xff0c;BROM 比较适用。而对于传输速度要求高、数据量大、地址连续的情况&#xff0c;比…

Azure 机器学习 - 使用自动化机器学习训练计算机视觉模型的数据架构

目录 一、用于训练的数据架构图像分类&#xff08;二进制/多类&#xff09;多标签图像分类对象检测实例分段 二、用于联机评分的数据架构输入格式输出格式图像分类&#xff08;二进制/多类&#xff09;多标签图像分类对象检测实例分段 在线评分和可解释性 (XAI) 的数据格式支持…

传输层中的TCP和UPD协议

一)应用层协议简介:根据需求明确要传输的信息&#xff0c;明确要传输的数据格式&#xff1b; 应用层协议:这个协议&#xff0c;实际上是和程序员打交道最多的协议了 1)其它四层都是操作系统&#xff0c;驱动&#xff0c;硬件实现好了的&#xff0c;咱们是不需要管 2)应用层:当我…

动态通讯录及程序保存在文件中

目录 一、结构体改造及增容函数 1.结构体部分 2.初始化函数及增容函数 二、信息添加及销毁和排序 1.信息添加函数&#xff08;Add&#xff09; 2.销毁函数&#xff08;Destroy&#xff09; 3.排序部分&#xff08;qsort&#xff09; 三、通讯录信息保存 1.保存在文件中…

Flutter笔记:光影动画按钮、滚动图标卡片组等

Flutter笔记 scale_design更新&#xff1a;光影动画按钮、滚动图标卡片组 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263…

SpringData、SparkStreaming和Flink集成Elasticsearch

本文代码链接&#xff1a;https://download.csdn.net/download/shangjg03/88522188 1 Spring Data框架集成 1.1 Spring Data框架介绍 Spring Data是一个用于简化数据库、非关系型数据库、索引库访问&#xff0c;并支持云服务的开源框架。其主要目标是使得对数据的访问变得方便快…

成集云 | 英克对接零售O2O+线上商城 | 解决方案

方案介绍 零售O2O线上商城是一种新型的商业模式&#xff0c;它通过线上和线下的融合&#xff0c;提供更加便捷的购物体验。其中&#xff0c;O2O指的是线上与线下的结合&#xff0c;通过互联网平台与实体店面的结合&#xff0c;实现线上线下的互动和协同。线上商城则是指通过互…

Git的进阶操作,在idea中部署gie

&#x1f3c5;我是默&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; ​​ &#x1f31f;在这里&#xff0c;我要推荐给大家我的专栏《git》。&#x1f3af;&#x1f3af; &#x1f680;无论你是编程小白&#xff0c;还是有一定基础的程序员&#xff0c;这…

[工业自动化-9]:西门子S7-15xxx编程 - PLC主站 - 信号量:模拟量

目录 前言&#xff1a; 一、模拟量模块 1.1 概述 1.2 安装 1.3 模拟量链接线 二、模拟量常见问题 2.1 两线制、四线制&#xff08;电流&#xff09; 2.2 模拟量模块的参数 2.3 差分信号与单端信号 三、如何防止电磁干扰 3.1 概述 3.2 工业现场的电磁干扰源来源 3.…

Hive3 on Spark3配置

1、软件环境 1.1 大数据组件环境 大数据组件版本Hive3.1.2Sparkspark-3.0.0-bin-hadoop3.2 1.2 操作系统环境 OS版本MacOSMonterey 12.1Linux - CentOS7.6 2、大数据组件搭建 2.1 Hive环境搭建 1&#xff09;Hive on Spark说明 Hive引擎包括&#xff1a;默认 mr、spark、…

IP行业API助力于网络分析和数据挖掘

引言 在当今数字化时代&#xff0c;数据成为了企业、科研机构和政府决策者的重要资源&#xff0c;而IP行业API则成为了数据分析及挖掘的工具之一。IP行业API是一种能够查询IP地址所属的行业分类信息的应用程序接口&#xff0c;它能够提供在网络分析、用户行为分析及大数据挖掘…

ChatRule:基于知识图推理的大语言模型逻辑规则挖掘11.10

ChatRule&#xff1a;基于知识图推理的大语言模型逻辑规则挖掘 摘要引言相关工作初始化和问题定义方法实验 摘要 逻辑规则对于揭示关系之间的逻辑联系至关重要&#xff0c;这可以提高推理性能并在知识图谱&#xff08;KG&#xff09;上提供可解释的结果。虽然已经有许多努力&a…

【LeetCode刷题笔记】堆和优先级队列

358. K 距离间隔重排字符串 解题思路: 大根堆 + 队列 , 1)首先 计数数组 统计 每个字符出现的次数 ,然后将 计数 > 0 的 字符 和 次数 一起放入 大根堆 ,大根堆中