深入理解ClickHouse跳数索引

一、跳数索引​

影响ClickHouse查询性能的因素很多。在大多数场景中,关键因素是ClickHouse在计算查询WHERE子句条件时是否可以使用主键。因此,选择适用于最常见查询模式的主键对于表的设计至关重要。

然而,无论如何仔细地调优主键,不可避免地会出现不能有效使用它的查询用例。用户通常依赖于ClickHouse获得时间序列类型的数据,但他们通常希望根据其他业务维度(如客户id、网站URL或产品编号)分析同一批数据。在这种情况下,查询性能可能会相当差,因为应用WHERE子句条件可能需要对每个列值进行完整扫描。虽然ClickHouse在这些情况下仍然相对较快,但计算数百万或数十亿个单独的值将导致“非索引”查询的执行速度比基于主键的查询慢得多。

在传统的关系数据库中,解决这个问题的一种方法是将一个或多个“二级”索引附加到表上。这是一个b-树结构,允许数据库在O(log(n))时间内找到磁盘上所有匹配的行,而不是O(n)时间(一次表扫描),其中n是行数。但是,这种类型的二级索引不适用于ClickHouse(或其他面向列的数据库),因为磁盘上没有单独的行可以添加到索引中。

相反,ClickHouse提供了一种不同类型的索引,在特定情况下可以显著提高查询速度。这些结构被标记为跳数索引,因为它们使ClickHouse能够跳过保证没有匹配值的数据块。

二、基本操作​

用户只能在MergeTree表引擎上使用数据跳数索引。每个跳数索引都有四个主要参数:

  • 索引名称。索引名用于在每个分区中创建索引文件。此外,在删除或具体化索引时需要将其作为参数。
  • 索引的表达式。索引表达式用于计算存储在索引中的值集。它可以是列、简单操作符、函数的子集的组合。
  • 类型。索引的类型控制计算,该计算决定是否可以跳过读取和计算每个索引块。
  • GRANULARITY。每个索引块由颗粒(granule)组成。例如,如果主表索引粒度为8192行,GRANULARITY为4,则每个索引“块”将为32768行。

当用户创建数据跳数索引时,表的每个数据部分目录中将有两个额外的文件。

  • skpidx{index_name}.idx:包含排序的表达式值。
  • skpidx{index_name}.mrk2:包含关联数据列文件中的相应偏移量。

如果在执行查询并读取相关列文件时,WHERE子句过滤条件的某些部分与跳数索引表达式匹配,ClickHouse将使用索引文件数据来确定每个相关的数据块是必须被处理还是可以被绕过(假设块还没有通过应用主键索引被排除)。这里用一个非常简单的示例:考虑以下加载了可预测数据的表。

CREATE TABLE skip_table
(my_key UInt64,my_value UInt64
)
ENGINE MergeTree primary key my_key
SETTINGS index_granularity=8192;INSERT INTO skip_table SELECT number, intDiv(number,4096) FROM numbers(100000000);

当执行一个不使用主键的简单查询时,将扫描my_value列所有的一亿条记录:

SELECT * FROM skip_table WHERE my_value IN (125, 700)┌─my_key─┬─my_value─┐
│ 512000 │      125 │
│ 512001 │      125 │
│    ... |      ... |
└────────┴──────────┘8192 rows in set. Elapsed: 0.079 sec. Processed 100.00 million rows, 800.10 MB (1.26 billion rows/s., 10.10 GB/s.

增加一个基本的跳数索引:

ALTER TABLE skip_table ADD INDEX vix my_value TYPE set(100) GRANULARITY 2;

通常,跳数索引只应用于新插入的数据,所以仅仅添加索引不会影响上述查询。

要使已经存在的数据生效,那执行:

ALTER TABLE skip_table MATERIALIZE INDEX vix;

重跑SQL:

SELECT * FROM skip_table WHERE my_value IN (125, 700)┌─my_key─┬─my_value─┐
│ 512000 │      125 │
│ 512001 │      125 │
│    ... |      ... |
└────────┴──────────┘8192 rows in set. Elapsed: 0.051 sec. Processed 32.77 thousand rows, 360.45 KB (643.75 thousand rows/s., 7.08 MB/s.)

这次没有再去处理1亿行800MB的数据,ClickHouse只读取和分析32768行360KB的数据—4个granule的数据。

下图是更直观的展示,这就是如何读取和选择my_value为125的4096行,以及如何跳过以下行而不从磁盘读取:

通过在执行查询时启用跟踪,用户可以看到关于跳数索引使用情况的详细信息。在clickhouse-client中设置send_logs_level:

SET send_logs_level='trace';

这将在尝试调优查询SQL和表索引时提供有用的调试信息。上面的例子中,调试日志显示跳数索引过滤了大部分granule,只读取了两个:

<Debug> default.skip_table (933d4b2c-8cea-4bf9-8c93-c56e900eefd1) (SelectExecutor): Index `vix` has dropped 6102/6104 granules.

三、跳数索引类型​

1、minmax​

这种轻量级索引类型不需要参数。它存储每个块的索引表达式的最小值和最大值(如果表达式是一个元组,它分别存储元组元素的每个成员的值)。对于倾向于按值松散排序的列,这种类型非常理想。在查询处理期间,这种索引类型的开销通常是最小的。

这种类型的索引只适用于标量或元组表达式——索引永远不适用于返回数组或map数据类型的表达式。

2、set​

这种轻量级索引类型接受单个参数max_size,即每个块的值集(0允许无限数量的离散值)。这个集合包含块中的所有值(如果值的数量超过max_size则为空)。这种索引类型适用于每组颗粒中基数较低(本质上是“聚集在一起”)但总体基数较高的列。

该索引的成本、性能和有效性取决于块中的基数。如果每个块包含大量惟一值,那么针对大型索引集计算查询条件将非常昂贵,或者由于索引超过max_size而为空,因此索引将不应用。

3、Bloom Filter Types​

Bloom filter是一种数据结构,它允许对集合成员进行高效的是否存在测试,但代价是有轻微的误报。在跳数索引的使用场景,假阳性不是一个大问题,因为惟一的问题只是读取一些不必要的块。潜在的假阳性意味着索引表达式应该为真,否则有效的数据可能会被跳过。

因为Bloom filter可以更有效地处理大量离散值的测试,所以它们可以适用于大量条件表达式判断的场景。特别的是Bloom filter索引可以应用于数组,数组中的每个值都被测试,也可以应用于map,通过使用mapKeys或mapValues函数将键或值转换为数组。

有三种基于Bloom过滤器的数据跳数索引类型:

  • 基本的bloom_filter接受一个可选参数,该参数表示在0到1之间允许的“假阳性”率(如果未指定,则使用.025)。

  • 更专业的tokenbf_v1。需要三个参数,用来优化布隆过滤器:(1)过滤器的大小字节(大过滤器有更少的假阳性,有更高的存储成本),(2)哈希函数的个数(更多的散列函数可以减少假阳性)。(3)布隆过滤器哈希函数的种子。有关这些参数如何影响布隆过滤器功能的更多细节,请参阅 这里 。此索引仅适用于String、FixedString和Map类型的数据。输入表达式被分割为由非字母数字字符分隔的字符序列。例如,列值This is a candidate for a "full text" search将被分割为This is a candidate for full text search。它用于LIKE、EQUALS、in、hasToken()和类似的长字符串中单词和其他值的搜索。例如,一种可能的用途是在非结构的应用程序日志行列中搜索少量的类名或行号。

  • 更专业的ngrambf_v1。该索引的功能与tokenbf_v1相同。在Bloom filter设置之前需要一个额外的参数,即要索引的ngram的大小。一个ngram是长度为n的任何字符串,比如如果n是4,A short string会被分割为A sh`` shoshorhortort sor str strstritrinring。这个索引对于文本搜索也很有用,特别是没有单词间断的语言,比如中文。

四、跳数索引函数​

跳数索引核心目的是限制流行查询分析的数据量。鉴于ClickHouse数据的分析特性,这些查询的模式在大多数情况下都包含函数表达式。因此,跳数索引必须与常用函数正确交互才能提高效率。这种情况可能发生在:

  • 插入数据并将索引定义为一个函数表达式(表达式的结果存储在索引文件中)或者
  • 处理查询,并将表达式应用于存储的索引值,以确定是否排除数据块。

每种类型的跳数索引支持的函数列表可以查看 这里 。通常,集合索引和基于Bloom filter的索引(另一种类型的集合索引)都是无序的,因此不能用于范围。相反,最大最小值索引在范围中工作得特别好,因为确定范围是否相交非常快。部分匹配函数LIKE、startsWith、endsWith和hasToken的有效性取决于使用的索引类型、索引表达式和数据的特定形状。

五、跳数索引的配置​

有两个可用的设置可应用于跳数索引。

  • use_skip_indexes (0或1,默认为1)。不是所有查询都可以有效地使用跳过索引。如果一个特定的过滤条件可能包含很多颗粒,那么应用数据跳过索引将导致不必要的、有时甚至是非常大的成本。对于不太可能从任何跳过索引中获益的查询,将该值设置为0。
  • force_data_skipping_indexes (以逗号分隔的索引名列表)。此设置可用于防止某些类型的低效查询。在某些情况下,除非使用跳过索引,否则查询表的开销太大,如果将此设置与一个或多个索引名一起使用,则对于任何没有使用所列索引的查询将返回一个异常。这将防止编写糟糕的查询消耗服务器资源。

六、最佳实践​

跳数索引并不直观,特别是对于来自RDMS领域并且习惯二级行索引或来自文档存储的反向索引的用户来说。要获得任何优化,应用ClickHouse数据跳数索引必须避免足够多的颗粒读取,以抵消计算索引的成本。关键是,如果一个值在一个索引块中只出现一次,就意味着整个块必须读入内存并计算,而索引开销是不必要的。

考虑以下数据分布:

假设主键/顺序是时间戳,并且在visitor_id上有一个索引。考虑下面的查询:

SELECT timestamp, url FROM table WHERE visitor_id = 1001

对于这种数据分布,传统的二级索引非常有利。不是读取所有的32678行来查找具有请求的visitor_id的5行,而是二级索引只包含5行位置,并且只从磁盘读取这5行。ClickHouse数据跳过索引的情况正好相反。无论跳转索引的类型是什么,visitor_id列中的所有32678值都将被测试。

因此,试图通过简单地向键列添加索引来加速ClickHouse查询的冲动通常是不正确的。只有在研究了其他替代方法之后,才应该使用此高级功能,例如修改主键(查看 如何选择主键)、使用投影或使用实体化视图。即使跳数索引是合适的,也经常需要对索引和表进行仔细的调优。

在大多数情况下,一个有用的跳数索引需要主键和目标的非主列/表达式之间具有很强的相关性。如果没有相关性(如上图所示),那么在包含数千个值的块中,至少有一行满足过滤条件的可能性很高,并且只有几个块会被跳过。相反,如果主键的值范围(如一天中的时间)与潜在索引列中的值强相关(如电视观众年龄),则最小值类型的索引可能是有益的。注意,在插入数据时,可以增加这种相关性,方法是在sort /ORDER by键中包含额外的列,或者以在插入时对与主键关联的值进行分组的方式对插入进行批处理。例如,即使主键是一个包含大量站点事件的时间戳,特定site_id的所有事件也都可以被分组并由写入进程插入到一起,这将导致许多只包含少量站点id的颗粒,因此当根据特定的site_id值搜索时,可以跳过许多块。

跳数索引的另一个候选者是高基数表达式,其中任何一个值在数据中都相对稀疏。一个可能的例子是跟踪API请求中的错误代码的可观察性平台。某些错误代码虽然在数据中很少出现,但对搜索来说可能特别重要。error_code列上的set skip索引将允许绕过绝大多数不包含错误的块,从而显著改善针对错误的查询。

最后,关键的最佳实践是测试、测试、再测试。同样,与用于搜索文档的b-树二级索引或倒排索引不同,跳数索引行为是不容易预测的。将它们添加到表中会在数据摄取和查询方面产生很大的成本,这些查询由于各种原因不能从索引中受益。它们应该总是在真实世界的数据类型上进行测试,测试应该包括类型、粒度大小和其他参数的变化。测试通常会暴露仅仅通过思考不能发现的陷阱。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/137577.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

14:00面试,14:06就出来了,问的问题有点变态。。。。。。

从小厂出来&#xff0c;没想到在另一家公司又寄了。 到这家公司开始上班&#xff0c;加班是每天必不可少的&#xff0c;看在钱给的比较多的份上&#xff0c;就不太计较了。没想到5月一纸通知&#xff0c;所有人不准加班&#xff0c;加班费不仅没有了&#xff0c;薪资还要降40%…

跨境电商:自养买家账号测评,你需要了解的细节

在跨境电商的浪潮中&#xff0c;自养买家账号测评已经成为了一种趋势。近期&#xff0c;不少跨境卖家咨询自养买家账号测评的相关问题&#xff0c;看来有必要再讲解一下卖家测评的一些细节。今天将着重介绍自养号测评的相关内容。 首先&#xff0c;什么叫做自养号测评呢&#x…

pytest + yaml 框架 -58.运行报告总结summary.json

前言 用例运行结束后&#xff0c;在本地生成summary.json 文件&#xff0c;总结运行结果。 v1.5.1版本更新内容&#xff1a; 1.解决参数化&#xff0c;中文在控制台输出问题 2.保存用例结果summary.json 保存用例结果summary.json 命令行执行用例 pytest运行结束&#xff0…

【Unity插件】分享几个完全免费的2D角色动画生成器(推荐收藏)

文章目录 前言一、lpc-character-generator二、Universal-LPC-Spritesheet-Character-Generator三、UP主开发的2D人物换装系统四、Character Editor: Megapack完结 前言 你可能游戏开发能力很强&#xff0c;但是正愁于2D角色动画&#xff0c;那么这篇文章就是为你而准备的&…

RISC Zero的Bonsai证明服务

1. 引言 Bonsai为通用ZKP网络&#xff0c;其支持任意链、任意协议、以及任意应用&#xff0c;利用ZKP来扩容、隐私和互操作。Bonsai的目标是为每条链都提供无限计算的能力。 借助Bonsai&#xff0c;可仅需数天的开发&#xff0c;即可实现对以太坊、L1链、Cosmos app链、L2 ro…

【FastCAE源码阅读7】视图方向切换按钮实现原理

在FastCAE工具栏上有视图切换按钮&#xff0c;如下图所示&#xff1a; 本文介绍如何实现。 FastCAE集成了Python解析器&#xff0c;当单击按钮时&#xff0c;中间用Python执行的&#xff0c;最后调用MainWindow.dll库接口实现的。 具体的Python代码在Python模块的py文件夹下的…

Postman汉化教程

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 Postman汉化教程 前言 前言 Postman是一款支持http协议的接口调试与测试工具&#xff0c;其主要特点就是功能强大&#xff0c;使用简单且易用性好 。无论是开发人员进行接口…

uniapp小程序才到第五层就报错navigateto:fail webview count limit exceed

错误截图 原因 小程序官方描述是说可以跳转10层&#xff0c;但是使用uniapp开发的程序在小程序中才运行到第五层就报错了&#xff0c;原因是因为没有设置appId。如果设置了就正常了。

文件缓存的读写

文件系统的读写&#xff0c;其实就是调用系统函数 read 和 write。下面的代码就是 read 和 write 的系统调用&#xff0c;在内核里面的定义。 SYSCALL_DEFINE3(read, unsigned int, fd, char __user *, buf, size_t, count) {struct fd f fdget_pos(fd); ......loff_t pos f…

数据分析是什么?

第一章- 数据分析是什么 数据分析是指 根据分析目的&#xff0c;用适当的分析方法及工具&#xff0c;对数据进行分析&#xff0c;提取有价值的信息&#xff0c;形成有效结论的过程。 数据分析的作用 通过观察数据&#xff0c;知道当前发生什么&#xff1f;通过具体的数据拆解…

Webpack 中 loader 的作用是什么?常用 loader 有哪些?

说说webpack中常见的Loader&#xff1f;解决了什么问题&#xff1f;- 题目详情 - 前端面试题宝典 1、loader 是什么 loader是 webpack 最重要的部分之一。 通过使用不同的 loader&#xff0c;我们能够调用外部的脚本或者工具&#xff0c;实现对不同格式文件的处理。 loader…

嵌入式养成计划-48----QT--信息管理系统:百川仓储管理

一百二十二、信息管理系统&#xff1a;百川仓储管理 122.1 UI界面 122.2 思路 客户端&#xff1a; 用户权限有两种类型&#xff0c;一种是用户权限&#xff0c;一种是管理员权限&#xff0c;登录时服务器端会根据数据库查询到的此用户名的权限返回不同的结果&#xff0c;客户…

Semantic-Guided Zero-Shot Learning for Low-Light ImageVideo Enhancement

论文阅读之无监督低光照图像增强 Semantic-Guided Zero-Shot Learning for Low-Light Image/Video Enhancement 代码&#xff1a; https://github.com/ShenZheng2000/SemantiGuided-Low-Light-Image-Enhancement 在低光条件下增加亮度的一个可行方法是使用更高的ISO或更长时间…

仿mudou库one thread one loop式并发服务器

目录 1.实现目标 2.HTTP服务器 实现高性能服务器-Reactor模型 模块划分 SERVER模块&#xff1a; HTTP协议模块&#xff1a; 3.项目中的子功能 秒级定时任务实现 时间轮实现 正则库的简单使用 通⽤类型any类型的实现 4.SERVER服务器实现 日志宏的封装 缓冲区Buffer…

简单漂亮的登录页面

效果图 说明 开发环境&#xff1a;vue3&#xff0c;sass 代码 <template><div class"container"><div class"card-container"><div class"card-left"><span><h1>Dashboard</h1><p>Lorem ip…

HTTP 协议详解-上(Fiddler 抓包演示)

文章目录 HTTP 协议HTTP 协议的工作过程HTTP 请求 (Request)认识URL关于 URL encode认识 "方法" (method)GET 方法POST 方法其他方法请求 "报头" (header)请求 "正文" (body) HTTP 响应详解状态码响应 "报头" (header) HTTP 协议 HTT…

【编程语言发展史】Unity开发语言的历史发展

Unity开发前期版本时&#xff0c;使用的是一种名为UnityScript的类似JavaScript的语言。然而&#xff0c;随着时间的推移&#xff0c;开发者社区大多数人都倾向于使用C#进行开发&#xff0c;Unity决定将重点放在C#上&#xff0c;因为C#具有更强大的生态系统、更好的性能和更广泛…

Spring Boot 3.0正式发布及新特性解读

目录 【1】Spring Boot 3.0正式发布及新特性依赖调整升级的关键变更支持 GraalVM 原生镜像 Spring Boot 最新支持版本Spring Boo 版本版本 3.1.5前置系统清单三方包升级 Ref 个人主页: 【⭐️个人主页】 需要您的【&#x1f496; 点赞关注】支持 &#x1f4af; 【1】Spring Boo…

月销破30万辆后,比亚迪整了波大的

最近乘联会公布了 2023 年 10 月新能源乘用车厂商销量榜单。 其中最为亮眼犹如鹤立鸡群的榜首&#xff0c;没错依然是我们熟悉的那个迪子&#xff01; 单月销量超 30 万辆&#xff0c;相较去年同期暴涨 38.4%&#xff0c;创下了比亚迪有史以来新高。 同时也成为了国内首个月销…

element-ui的form校验失败

数值与字符串混淆 数值 <el-input type"number" v-model.number"form.averageFruitWeight" placeholder"请输入平均单果重"/>字符串 fruitDevelopmentStage: [{pattern: ^[-\\]?([0-9]\\.?)?[0-9]$, message: 输入必须为数字, trigge…