目录
- 239. 滑动窗口最大值
- 347.前 K 个高频元素
- 方法一
- 方法二
239. 滑动窗口最大值
链接
窗口 — 维持一个单调递增队列
为什么要使用队列?
- 在窗口移动的时候,方便把不属于窗口的最大值剔除。(当窗口移动之后)
class Solution:def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:q = deque() # store indexres = []l = r = 0while r < len(nums):# push# make sure that it's a mono increasing queuewhile q and nums[q[-1]] < nums[r]:q.pop()q.append(r)# pop element # since it's not in the window anymoreif l > q[0]:q.popleft()# append the max num in the window to res# only when a window is formed can we move the l pointerif (r + 1) >= k:res.append(nums[q[0]])l += 1r += 1return res
347.前 K 个高频元素
链接
方法一
Counter得到频率表,反转频率表,再进行heapify。
heappop前k个元素,即为前K个高频元素。
class Solution:def topKFrequent(self, nums: List[int], k: int) -> List[int]:_map = Counter(nums)_map = [(-v, i) for i, v in _map.items()]heapify(_map)res = []for i in range(k):want = heappop(_map)res.append(want[1])return res
方法二
Bucket Sort
class Solution:def topKFrequent(self, nums: List[int], k: int) -> List[int]:_map = Counter(nums)freq = [[] for i in range(len(nums) + 1)]for key, val in _map.items():freq[val].append(key)res = []for i in range(len(freq) - 1, 0, -1):while freq[i] and k > 0:res.append(freq[i].pop())k -= 1if k == 0:breakreturn res