【pytorch源码分析--torch执行流程与编译原理】

在这里插入图片描述

背景

  • 解读torch源码方便算子开发
  • 方便后续做torch 模型性能开发

基本介绍

代码库

  • https://github.com/pytorch/pytorch
  • 在这里插入图片描述

模块介绍

  • aten: A Tensor Library的缩写。与Tensor相关的内容都放在这个目录下。如Tensor的定义、存储、Tensor间的操作(即算子/OP)等
    在这里插入图片描述
    可以看到在aten/src/Aten目录下,算子实现都在native/目录中。其中有CPU的算子实现,以及CUDA的算子实现(cuda/)等

  • torch: 即PyTorch的前端代码。我们用户在import torch时实际引入的是这个目录。
    其中包括前端的Python文件,也包括高性能的c++底层实现(csrc/)。为实现Python和c++模块的打通,这里使用了pybind作为胶水。在python中使用torch._C.[name]实际调用的就是libtorch.so中的c++实现,而PyTorch在前端将其进一步封装为python函数供用户调用

  • c10、caffe2:移植caffe后端,c10指的是caffe tensor library,相当于caffe的aten。
    PyTorch1.0完整移植了caffe2的源码,将两个项目进行了合并。引入caffe的原因是Pytorch本身拥有良好的前端,caffe2拥有良好的后端,二者在开发过程中拥有大量共享代码和库。简而言之,caffe2是一个c++代码,实现了各种设备后端逻辑

  • tools:用于代码自动生成(codegen),例如autograd根据配置文件实现反向求导OP的映射。

  • scripts:一些脚本,用于不同平台项目构建或其他功能性脚本

小结

  • PyTorch源码中,最重要的两个目录是aten和torch目录
  • aten(A Tensor Library)目录主要是和Tensor相关实现的目录,包括算子的具体实现
  • torch目录是PyTorch前端及其底层实现,用户import torch即安装的这个目录

torch前端与后端

  • PyTorch 中,前端指的是 PyTorch 的 Python 接口,

  • 后端指的是 PyTorch 的底层 C++ 引擎,它负责执行前端指定的计算

  • 后端引擎也负责与底层平台(如 GPU 和 CPU)进行交互,并将计算转换为底层平台能够执行的指令

  • 在这里插入图片描述在这里插入图片描述

  • 编译后的torch前端接口没有csrc后端接口,该部分c++内容(csrc目录)并没有被复制过来,而是以编译好的动态库文件(_C.cpython-*.so)

前后端交互流程

  • 我们以torch.Tensor为例
import torch
torch.Tensor

在这里插入图片描述
在这里插入图片描述

结论是对应实现在 torch/csrc/autograd/python_variable.cpp中,而这个是通过编译后的so包实现_C调用,因为pyi是一个python存根文件,只有定义没有实现,实现都在python_variable.cpp中

  • 看看对应c++的实现逻
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

小结

  • PyTorch前端主要是python API,在设计上采用Pythonic式的编程风格,可以让用户像使用python一样使用PyTorch
  • 而后端主要指C++ API,其对外提供的C++接口,也可以一定程度上实现PyTorch的大部分功能,而且更适用于嵌入式等场景
  • 而前端主要是通过pybind调用的后端c++实现,具体是c++被编译成_C.[***].so动态库,然后python调用torch._C实现调用c++中的函数

动态图与静态图

一个主流的训练框架需要有两大特征:

  • 实现类似numpy的张量计算,可以使用GPU进行加速;

  • 实现带自动微分系统的深度神经网络

静态图

  • 在TensorFlow1.x中,我们如果需要执行计算,需要建立一个session,并执行session.run()来执行
import tensorflow as tfa = tf.ones(5)
b = tf.ones(5)
c = a + b
sess = tf.Session()
print(sess.run(c))
  • 其整个过程其实是将计算过程构成了一张计算图,然后运行这个图的根节点。这样先构成图,再运行图的方式我们称为静态图或者图模式

动态图

  • 在PyTorch中,我们可以在计算的任意步骤直接输出结果(当然最新的ensorflow已经支持动态模式)
  • PyTorch每一条语句是同步执行的,即每一条语句都是一个(或多个)算子,被调用时实时执行。这种实时执行算子的方式我们称为动态图或算子模式
import tensorflow as tfa = tf.ones(5)
b = tf.ones(5)
c = a + b
print(c) # tf.Tensor([2. 2. 2. 2. 2.], shape=(5,), dtype=float32)
import torcha = torch.ones(5)
b = torch.ones(5)
c = a + b
print(c) # tensor([2., 2., 2., 2., 2.])

小结

  • 动态图的优点显而易见,可以兼容Python式的编程风格,实时打印编程结果,用户友好性做到最佳;
  • 静态图则在性能方面有一定优势,即在整个图执行前,可以将整张图进行编译优化,通过融合等策略改变图结构,从而实现较好的性能
  • PyTorch原生支持动态图,但是也在静态图方面做了诸多尝试,例如 torchscript(jit.script、jit.trace)、TorchDynamo、torch.fx、LazyTensor

图原理

在这里插入图片描述

动态图&静态图&dispatch原理解读视频

动态图

  • 首先PyTorch的动态图是从Python源码下降,拆分成多个python算子调用,具体调用到tensor的OP。经过pybind转换到c++,并通过dispatch机制选择不同设备下的算子实现,最终实现调用的底层设备实现(如Nvidia cudnn、intel mkl等)

静态图

jit.script

  • jit.script是在python源码角度分析function的源码,将python code转换为图(torchscript IR格式)。由于是直接从python源码转的,因此有许多python语法无法完备支持,存在转换失败的可能性

jit.trace

  • jit.trace则是在c++层面获取算子,在算子调用时记录成图(torchscript IR格式)。由于需要下降到c++,因此需要输入一遍数据真正“执行”一遍。而获取的图具有确定性,即如果图存在分支,则只能被trace记录其中一个分支的计算路线

torch.fx

  • python层面算子调用时记录的算子,输出是fx IR格式的图

LazyTensor

  • 在算子调用时记录成的图,该调用会截获正常算子的运行,在用户指定同步时再整体运行已积累的图

TorchDynamo

  • 将python源码转变成二进制后,通过分析二进制源码,获取分析的算子和图。最新的PyTorch1.14(2.0)中将其作为torch.compile()的主要路线

算子支持与dispatch机制

  • 小结训练框架最重要的特点是:

    • 支持类似numpy的张量计算,可以使用GPU加速;
    • 支持带自动微分系统的深度神经网络;
    • 原生支持动态图执行

    针对以上问题,提出3个问题:

    • PyTorch如何支持CPU、GPU等诸多设备的?
    • PyTorch如何实现自动微分的?
    • 动态图的原理是什么?

动态图Dispatch机制

import torcha = torch.randn(5, 5)
b = torch.randn(5, 5)
c = a.add(b)
print(c.device)  # cpua = a.to("cuda")
b = b.to("cuda")
c = a.add(b)
print(c.device)  # cuda
  • 上述示例中,a.add(b)这个算子,无论是cpu设备的tensor还是gpu设备的tensor,都可以得以支持
  • 为什么同一个算子在不同设备上都能运行呢?

dispatch机制

  • 文档:https://pytorch.org/tutorials/advanced/dispatcher.html

原理

在这里插入图片描述
在这里插入图片描述

  • 我们可以将Dispatch机制看做一个二维的表结构。其一个维度是各类设备(CPU、CUDA、XLA、ROCM等等),一个维度是各类算子(add、mul、sub等等)。
  • PyTorch提供了一套定义(def)、实现(impl)机制,可以实现某算子在某设备(dispatch key)的绑定
  • aten/src/ATen/core/NamedRegistrations.cpp 算子注册机制
    在这里插入图片描述

例如m.impl()中就是对dispatch key为CPU时neg算子的实现绑定,其绑定了neg_cpu()这个函数
大多数情况我们只需要实现m.impl,并绑定一个实现函数即可

  • 除了m.def以及m.impl之外,还有m.fallback作为回退
    在没有m.impl实现的情况下,默认回退的实现(例如fallback回cpu实现)。这样我们将不需要对cuda实现100%的算子实现,而是优先实现高优先级的算子,减少新设备情况下的开发量,而未被实现的算子则默认被fallback实现

  • 实现一个定义算子add覆盖原始add算子(todo)

  • 算子配置文件native_functions.yaml
    PyTorch中采用了算子配置文件aten/src/ATen/native/native_functions.yaml,配合codegen模块自动完成整个流程
    也就是多有的自动注册流程会基于当前这个yaml配置文件自动生成算子注册方法与python bind实现
    在这里插入图片描述

举例说明

以dot算子为例

  • 配置
    在这里插入图片描述
  • 算子实现
    在这里插入图片描述
    上诉代码手动编译后,由codegen会自动生成def、impl的实现,也会自动生成pybind的实现
  • build文件夹找到自动生成的代码 pytorch/build/aten/src/ATen/RegisterCPU.cpp torch/csrc/autograd/generated/python_variable_methods.cpp

反向传播

  • dispatch实际是前向算子

  • 类似的也有反向算子,配置文件derivatives.yaml,其位于tools/autograd/derivatives.yaml
    在这里插入图片描述
    可以看到,每一个算子以“- name:”开头。
    然后还包含一个result字段,这个字段其实就是这个算子的求导公式
    前向算子会利用codegen自动生成注册部分的代码。同理,反向算子也可以根据算子微分注册表自动生成dispatch注册,然后被绑定到Python的函数中
    有关梯度计算请参考

举例说明
  • 配置
    在这里插入图片描述
    最后利用codegen根据算子微分注册表自动生成dispatch注册,然后被绑定到Python的函数中

动态图执行过程

  • 前向过程
import torcha = torch.ones(5, 5)
b = torch.ones(5, 5)
c = a + b
print(c)

实际上在每执行一条python代码时,前向传播的算子都会被实时调用执行
在用户调用某算子(例如dot时),其实调用的是Tensor下的dot()函数实现。其具体实现在c++中,经过pybind和dispatch(选择设备)机制后定位带at::native::dot()函数。而后对于CPU来说,可以调用intel MKL库的mkldnn_matmul()实现

  • 反向过程
import torcha = torch.ones(5, 5, requires_grad=True)
b = torch.ones(5, 5, requires_grad=True)
c = (a + b).sum()
c.backward()
print(c)
print(c.grad_fn)
# tensor(50., grad_fn=<SumBackward0>)
# <SumBackward0 object at 0x0000015E8DA2A730>

在执行loss.backward()时,实际调用执行的是各中间tensor的grad_fn,由于反向计算时会组成一个由grad_fn为节点,next_functions为边的反向图,因此如何高效执行这个图成为一个问题
为了解决这个问题,引入了根据设备数建立的线程池调度引擎

总结

在这里插入图片描述

  • 源码编译:https://github.com/pytorch/pytorch/tree/main#adjust-build-options-optional
# 拉取依赖
git clone --recursive https://github.com/pytorch/pytorch
cd pytorch
# if you are updating an existing checkout
git submodule sync
git submodule update --init --recursive# 编包
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
python setup.py build --cmake-only
ccmake build  # or cmake-gui build

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/136010.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Maven简介

一、Maven模型 二、模型实现 三、对应代码项目介绍

MySQL开启远程访问权限

默认情况下&#xff0c;MySQL只允许本地登录&#xff0c;即只能在安装MySQL环境所在的主机下访问。但是在日常开发和使用中&#xff0c;我们经常需要访问远端服务器的数据库&#xff0c;此时就需要开启服务器端MySQL的远程连接权限。1、生成环境&#xff0c;连接MySQL 2、查看M…

直面LED Driver测试挑战,助力显示屏行业变中求变!

杭州亚运会开幕式惊艳世界&#xff0c;引发社会各界一致赞誉&#xff01;在大气浪漫的舞台效果中&#xff0c;LED屏、裸眼3D屏凭借“硬核科技”出圈&#xff0c;为大家带来科技、活力、诗意的“中国式浪漫”观赏体验。而这美轮美奂的LED呈现效果背后&#xff0c;主要依靠的是LE…

Geotrust的企业型通配符SSL证书申请

Geotrust作为世界知名的CA认证机构之一&#xff0c;颁发了各种SSL证书&#xff0c;其签发的数字证书被广泛应用于电子商务、企业间通信、网络安全等领域&#xff0c;SSL数字证书可以验证网络中用户的身份&#xff0c;确保数据的机密性和完整性。今天随SSL盾小编了解如何申请Geo…

载波通讯电表的使用年限是多久?

随着科技的飞速发展&#xff0c;智能家居、物联网等概念逐渐深入人心&#xff0c;载波通讯电表作为一种新型的智能电表&#xff0c;凭借其低功耗、高可靠性、远程通讯等优点&#xff0c;广泛应用于居民用电、工业生产等领域。那么&#xff0c;载波通讯电表的使用年限是多久呢&a…

怎么经营朋友圈?

朋友圈就是现代人的社交场&#xff0c;朋友圈发布的好坏会直接影响你的人际关系。怎么经营朋友圈&#xff1f;这个问题大部分人都不太知道&#xff0c;今天我们就来说说。 一、常见朋友圈&#xff1a; 1、广告型朋友圈 现在的朋友见到的&#xff0c;大部分都是每天发十多条的…

Spring笔记(四)(黑马)(web层解决方案-SpringMVC)

01、Spring MVC 简介 1.1 SpringMVC概述 SpringMVC是一个基于Spring开发的MVC轻量级框架&#xff0c;Spring3.0后发布的组件&#xff0c;SpringMVC和Spring可以无 缝整合&#xff0c;使用DispatcherServlet作为前端控制器&#xff0c;且内部提供了处理器映射器、处理器适配器…

【亚马逊云科技产品测评】活动征文|AWS Linux配置node环境并部署Vue项目

前言 在数字化时代&#xff0c;AWS云服务扮演着至关重要的角色。AWS&#xff08;Amazon Web Services&#xff09;是亚马逊公司旗下的云计算服务平台&#xff0c;为全球各地的企业、组织和个人开发者提供了一系列广泛而深入的云服务。 在AWS云服务中&#xff0c;计算、存储、数…

5G毫米波通信中的关键技术

随着5G技术的快速发展&#xff0c;毫米波通信作为其中的一项重要技术&#xff0c;在高速数据传输、低延迟通信和大规模连接等方面具有显著的优势。本文将探讨5G毫米波通信中的关键技术&#xff0c;包括毫米波频段的选择、信号处理技术和MIMO技术等。 一、毫米波频段的选择 毫米…

什么是数据可视化,为什么数据可视化很重要?

数据可视化是数据的图形表示&#xff0c;可以帮助人们更轻松地理解和解释复杂的信息。它涉及创建数据的视觉表示&#xff0c;例如图表、图形、地图和其他视觉元素&#xff0c;以传达数据中的见解、模式和趋势。数据可视化是将原始数据转化为可操作知识的关键工具。 以下是数据…

jacoco和sonar

目录 jacoco 引入依赖 构建配置修改 单元测试 生成报告 查看报告 报告说明 1. Instructions 2. Branches 3. Cyclomatic Complexity 4. Lines 5. Methods 6. Classes sonar7.7 基础环境 需要下载软件 解压文件并配置 运行启动 jacoco 引入依赖 <dep…

C语言 做一个学生信息管理系统

#include<stdio.h> #include<string.h> #include<stdlib.h> typedef struct person {char name[30];char sex[10];int num;struct person *next; }stu; stu *head NULL; void printf_link(stu *head) {stu *pd head;while(pd ! NULL){printf("姓名&a…

提升绘图效率不再难,看看这8款AI流程图软件,一键快速生成流程图!

流程图是表示流程、系统和思想的重要视觉辅助工具。在当今数字时代&#xff0c;AI技术的出现已经彻底改变了制作流程图的方式。 在本文中&#xff0c;我们将与各位分享8款好用的AI流程图软件&#xff0c;借助每款软件内置的AI能力&#xff0c;可以快速绘制出一份完整的流程图&…

11月11日|欢迎参加Sui Meetup泰国活动!

现在是Sui基金会与泰国Sui社区见面的时候啦&#xff0c;我们诚邀每个人参加今年最大的Sui Meetup泰国活动&#xff0c;主题是“Summer Paradise&#xff08;夏日天堂&#xff09;”。在活动中&#xff0c;您将会见到来自Sui基金会、ContributionDAO、KX、Inspex、Cryptomind、A…

线程基础知识

目录 进程 线程 CPU 核心数和线程数的关系 上下文切换(Context switch) Thread 和 Runnable 的区别 Callable、Future 和 FutureTask 面试题:新启线程有几种方式? 中止 中断 深入理解 run()和 start() 进程 我们常听说的是应用程序&#xff0c;也就是 app&#xff…

【算法练习Day42】买卖股票的最佳时机 III买卖股票的最佳时机 IV

​&#x1f4dd;个人主页&#xff1a;Sherry的成长之路 &#x1f3e0;学习社区&#xff1a;Sherry的成长之路&#xff08;个人社区&#xff09; &#x1f4d6;专栏链接&#xff1a;练题 &#x1f3af;长路漫漫浩浩&#xff0c;万事皆有期待 文章目录 买卖股票的最佳时机 III买卖…

超声波热量表和电磁热量表有哪些区别?

随着我们能源消耗日益增长&#xff0c;热量计量已成为节能减排、能源管理的重要手段。热量表是用于测量热能消耗的仪表&#xff0c;其中超声波热量表和电磁热量表是常见的两种类型。下面&#xff0c;就由小编来为大家详细的介绍下超声波热量表和电磁热量表的区别&#xff0c;一…

【案例卡】clickhouse:多行数据拼接在一行

一、需求 针对clickhouse数据库中&#xff0c;group by 分组后的字符串字段&#xff0c;拼接处理在一行的问题实现。在mysql中&#xff0c;可以用group_concat()函数来实现&#xff0c;而clickhouse数据库不支持此函数&#xff0c;特此记录实现方式。 二、clickhouse相关函数…

桌面远程连接

遇到的问题&#xff1a; win11家庭版不支持远程连接&#xff0c;如下图所示&#xff1a; 解决办法&#xff1a; 被控方电脑 1、打开控制面板-系统和安全-允许远程访问&#xff0c;勾选允许远程协助连接这台计算机 2、打开控制面板-系统和安全-Windows Defender 防火墙-允许…

php加密解密的用法(对称加密,非对称加密)

加密和摘要的区别 ***摘要&#xff1a;是从已知的数据中&#xff0c;通过摘要计算出一个值&#xff0c;一个数据对应一个或多个摘要的值 *** 比如&#xff1a;md5 和 sha1 sha256 hash 就是得到一个特定的值 &#xff0c;同一个数据得到的md5 是一样的&#xff0c;不会改变的 比…