DAIR-V2X-V 3D检测数据集 转为Kitti格式 | 可视化

本文分享在DAIR-V2X-V数据集中,将标签转为Kitti格式,并可视化3D检测效果。

一、将标签转为Kitti格式

DAIR-V2X包括不同类型的数据集:

  • DAIR-V2X-I
  • DAIR-V2X-V
  • DAIR-V2X-C
  • V2X-Seq-SPD
  • V2X-Seq-TFD
  • DAIR-V2X-C-Example: google_drive_link
  • V2X-Seq-SPD-Example: google_drive_link
  • V2X-Seq-TFD-Example: google_drive_link

本文选择DAIR-V2X-V作为示例。

1、下载DAIR-V2X工程

 DAIR-V2X开源地址:https://github.com/AIR-THU/DAIR-V2X

2、存放数据

可以将数据存放到data目录中,比如:data/DAIR-V2X-V/single-vehicle-side,里面包含两个关键目录和一个文件

calib/

label/

data_info.json

3、修复bug

在tools/dataset_converter/gen_kitti/label_json2kitti.py中的22行,将 i15 = str(-eval(item["rotation"])) 改为:

i15 = str(-float(item["rotation"]))

如何不修改会报错的;

DAIR-V2X-gp/tools/dataset_converter/gen_kitti/label_json2kitti.py", line 22, in write_kitti_in_txt
    i15 = str(-eval(item["rotation"]))
TypeError: eval() arg 1 must be a string, bytes or code object

将tools/dataset_converter/gen_kitti/label_json2kitti.py复制到根目录中,避免找不到tool库。

4、修改配置参数

label_json2kitti.py中,可以将rawdata_copy和kitti_pcd2bin注释掉。

这样节约时间,不用程序拷贝图像、点云数据,只需生成标签即可。

if __name__ == "__main__":print("================ Start to Convert ================")args = parser.parse_args()source_root = args.source_roottarget_root = args.target_rootprint("================ Start to Copy Raw Data ================")mdkir_kitti(target_root)# rawdata_copy(source_root, target_root)# kitti_pcd2bin(target_root)

5、转换数据

执行如下命令

python dair2kitti.py --source-root ./data/DAIR-V2X-V/single-vehicle-side --target-root ./data/DAIR-V2X-V/single-vehicle-side   --split-path ./data/split_datas/single-vehicle-split-data.json   --label-type camera --sensor-view vehicle

会打印信息

================ Start to Convert ================
================ Start to Copy Raw Data ================
================ Start to Generate Label ================
================ Start to Generate Calibration Files ================
15627 15627
================ Start to Generate ImageSet Files ================

查看目录:data/DAIR-V2X-V/single-vehicle-side,生成了3个目录

ImageSets

testing

training

其中,testing目录是空的

ImageSets目录包含:

training目录包含:

6、查看生成数据格式

查看calib中的相机标定文件,比如 000000.txt

P2: 3996.487567 0.0 955.58618 0.0 0.0 3963.430994 527.646219 0.0 0.0 0.0 1.0 0.0
P2: 3996.487567 0.0 955.58618 0.0 0.0 3963.430994 527.646219 0.0 0.0 0.0 1.0 0.0
P2: 3996.487567 0.0 955.58618 0.0 0.0 3963.430994 527.646219 0.0 0.0 0.0 1.0 0.0
P2: 3996.487567 0.0 955.58618 0.0 0.0 3963.430994 527.646219 0.0 0.0 0.0 1.0 0.0
R0_rect: 1 0 0 0 1 0 0 0 1
Tr_velo_to_cam: 0.006283 -0.999979 -0.001899 -0.298036 -0.005334 0.001865 -0.999984 -0.666812 0.999966 0.006293 -0.005322 -0.516927
Tr_velo_to_cam: 0.006283 -0.999979 -0.001899 -0.298036 -0.005334 0.001865 -0.999984 -0.666812 0.999966 0.006293 -0.005322 -0.516927

查看lable_2中的标签,比如 000000.txt

Car 0 0 0.33888581543844903 0 527.938232 69.723068 637.4556269999999 0.850836 4.337498 2.073565 -9.601712831407 0.8624079931420001 32.383280568744 1.615145

二、可视化3D框

 使用Kitti的方式,实现可视化推理结果,上面生成的结果,和kitii标签格式是一致的。

在新建一个vis目录包括:

dataset                    存放相机标定数据、图片、标签

save_3d_output  存放可视化图片

kitti_3d_vis.py     可视化运行此代码

kitti_util.py            依赖代码

具体的目录结构:

主代码 kitti_3d_vis.py

# kitti_3d_vis.pyfrom __future__ import print_functionimport os
import sys
import cv2
import random
import os.path
import shutil
from PIL import Image
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = os.path.dirname(BASE_DIR)
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(ROOT_DIR, 'mayavi'))
from kitti_util import *def visualization():import mayavi.mlab as mlabdataset = kitti_object(r'./dataset/')path = r'./dataset/testing/label_2/'Save_Path = r'./save_3d_output/'files = os.listdir(path)for file in files:name = file.split('.')[0]save_path = Save_Path + name + '.png'data_idx = int(name)# Load data from datasetobjects = dataset.get_label_objects(data_idx)img = dataset.get_image(data_idx)img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)calib = dataset.get_calibration(data_idx)print(' ------------ save image with 3D bounding box ------- ')print('name:', name)show_image_with_boxes(img, objects, calib, save_path, True)if __name__=='__main__':visualization()

依赖代码 kitti_util.py

# kitti_util.pyfrom __future__ import print_functionimport os
import sys
import cv2
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = os.path.dirname(BASE_DIR)
sys.path.append(os.path.join(ROOT_DIR, 'mayavi'))class kitti_object(object):def __init__(self, root_dir, split='testing'):self.root_dir = root_dirself.split = splitself.split_dir = os.path.join(root_dir, split)if split == 'training':self.num_samples = 7481elif split == 'testing':self.num_samples = 7518else:print('Unknown split: %s' % (split))exit(-1)self.image_dir = os.path.join(self.split_dir, 'image_2')self.calib_dir = os.path.join(self.split_dir, 'calib')self.label_dir = os.path.join(self.split_dir, 'label_2')def __len__(self):return self.num_samplesdef get_image(self, idx):assert(idx<self.num_samples) img_filename = os.path.join(self.image_dir, '%06d.png'%(idx))return load_image(img_filename)def get_calibration(self, idx):assert(idx<self.num_samples) calib_filename = os.path.join(self.calib_dir, '%06d.txt'%(idx))return Calibration(calib_filename)def get_label_objects(self, idx):# assert(idx<self.num_samples and self.split=='training') label_filename = os.path.join(self.label_dir, '%06d.txt'%(idx))return read_label(label_filename)def show_image_with_boxes(img, objects, calib, save_path, show3d=True):''' Show image with 2D bounding boxes '''img1 = np.copy(img) # for 2d bboximg2 = np.copy(img) # for 3d bboxfor obj in objects:if obj.type=='DontCare':continuecv2.rectangle(img1, (int(obj.xmin),int(obj.ymin)), (int(obj.xmax),int(obj.ymax)), (0,255,0), 2) # 画2D框box3d_pts_2d, box3d_pts_3d = compute_box_3d(obj, calib.P) # 获取3D框-图像(8*2)、3D框-相机坐标系(8*3)img2 = draw_projected_box3d(img2, box3d_pts_2d) # 在图像上画3D框if show3d:Image.fromarray(img2).save(save_path) # 保存带有3D框的图像# Image.fromarray(img2).show()else:Image.fromarray(img1).save(save_path) # 保存带有2D框的图像# Image.fromarray(img1).show()class Object3d(object):''' 3d object label '''def __init__(self, label_file_line):data = label_file_line.split(' ')data[1:] = [float(x) for x in data[1:]]# extract label, truncation, occlusionself.type = data[0] # 'Car', 'Pedestrian', ...self.truncation = data[1] # truncated pixel ratio [0..1]self.occlusion = int(data[2]) # 0=visible, 1=partly occluded, 2=fully occluded, 3=unknownself.alpha = data[3] # object observation angle [-pi..pi]# extract 2d bounding box in 0-based coordinatesself.xmin = data[4] # leftself.ymin = data[5] # topself.xmax = data[6] # rightself.ymax = data[7] # bottomself.box2d = np.array([self.xmin,self.ymin,self.xmax,self.ymax])# extract 3d bounding box informationself.h = data[8] # box heightself.w = data[9] # box widthself.l = data[10] # box length (in meters)self.t = (data[11],data[12],data[13]) # location (x,y,z) in camera coord.self.ry = data[14] # yaw angle (around Y-axis in camera coordinates) [-pi..pi]def print_object(self):print('Type, truncation, occlusion, alpha: %s, %d, %d, %f' % \(self.type, self.truncation, self.occlusion, self.alpha))print('2d bbox (x0,y0,x1,y1): %f, %f, %f, %f' % \(self.xmin, self.ymin, self.xmax, self.ymax))print('3d bbox h,w,l: %f, %f, %f' % \(self.h, self.w, self.l))print('3d bbox location, ry: (%f, %f, %f), %f' % \(self.t[0],self.t[1],self.t[2],self.ry))class Calibration(object):''' Calibration matrices and utils3d XYZ in <label>.txt are in rect camera coord.2d box xy are in image2 coordPoints in <lidar>.bin are in Velodyne coord.y_image2 = P^2_rect * x_recty_image2 = P^2_rect * R0_rect * Tr_velo_to_cam * x_velox_ref = Tr_velo_to_cam * x_velox_rect = R0_rect * x_refP^2_rect = [f^2_u,  0,      c^2_u,  -f^2_u b^2_x;0,      f^2_v,  c^2_v,  -f^2_v b^2_y;0,      0,      1,      0]= K * [1|t]image2 coord:----> x-axis (u)||v y-axis (v)velodyne coord:front x, left y, up zrect/ref camera coord:right x, down y, front zRef (KITTI paper): http://www.cvlibs.net/publications/Geiger2013IJRR.pdfTODO(rqi): do matrix multiplication only once for each projection.'''def __init__(self, calib_filepath, from_video=False):if from_video:calibs = self.read_calib_from_video(calib_filepath)else:calibs = self.read_calib_file(calib_filepath)# Projection matrix from rect camera coord to image2 coordself.P = calibs['P2'] self.P = np.reshape(self.P, [3,4])# Rigid transform from Velodyne coord to reference camera coordself.V2C = calibs['Tr_velo_to_cam']self.V2C = np.reshape(self.V2C, [3,4])self.C2V = inverse_rigid_trans(self.V2C)# Rotation from reference camera coord to rect camera coordself.R0 = calibs['R0_rect']self.R0 = np.reshape(self.R0,[3,3])# Camera intrinsics and extrinsicsself.c_u = self.P[0,2]self.c_v = self.P[1,2]self.f_u = self.P[0,0]self.f_v = self.P[1,1]self.b_x = self.P[0,3]/(-self.f_u) # relative self.b_y = self.P[1,3]/(-self.f_v)def read_calib_file(self, filepath):''' Read in a calibration file and parse into a dictionary.'''data = {}with open(filepath, 'r') as f:for line in f.readlines():line = line.rstrip()if len(line)==0: continuekey, value = line.split(':', 1)# The only non-float values in these files are dates, which# we don't care about anywaytry:data[key] = np.array([float(x) for x in value.split()])except ValueError:passreturn datadef read_calib_from_video(self, calib_root_dir):''' Read calibration for camera 2 from video calib files.there are calib_cam_to_cam and calib_velo_to_cam under the calib_root_dir'''data = {}cam2cam = self.read_calib_file(os.path.join(calib_root_dir, 'calib_cam_to_cam.txt'))velo2cam = self.read_calib_file(os.path.join(calib_root_dir, 'calib_velo_to_cam.txt'))Tr_velo_to_cam = np.zeros((3,4))Tr_velo_to_cam[0:3,0:3] = np.reshape(velo2cam['R'], [3,3])Tr_velo_to_cam[:,3] = velo2cam['T']data['Tr_velo_to_cam'] = np.reshape(Tr_velo_to_cam, [12])data['R0_rect'] = cam2cam['R_rect_00']data['P2'] = cam2cam['P_rect_02']return datadef cart2hom(self, pts_3d):''' Input: nx3 points in CartesianOupput: nx4 points in Homogeneous by pending 1'''n = pts_3d.shape[0]pts_3d_hom = np.hstack((pts_3d, np.ones((n,1))))return pts_3d_hom# =========================== # ------- 3d to 3d ---------- # =========================== def project_velo_to_ref(self, pts_3d_velo):pts_3d_velo = self.cart2hom(pts_3d_velo) # nx4return np.dot(pts_3d_velo, np.transpose(self.V2C))def project_ref_to_velo(self, pts_3d_ref):pts_3d_ref = self.cart2hom(pts_3d_ref) # nx4return np.dot(pts_3d_ref, np.transpose(self.C2V))def project_rect_to_ref(self, pts_3d_rect):''' Input and Output are nx3 points '''return np.transpose(np.dot(np.linalg.inv(self.R0), np.transpose(pts_3d_rect)))def project_ref_to_rect(self, pts_3d_ref):''' Input and Output are nx3 points '''return np.transpose(np.dot(self.R0, np.transpose(pts_3d_ref)))def project_rect_to_velo(self, pts_3d_rect):''' Input: nx3 points in rect camera coord.Output: nx3 points in velodyne coord.''' pts_3d_ref = self.project_rect_to_ref(pts_3d_rect)return self.project_ref_to_velo(pts_3d_ref)def project_velo_to_rect(self, pts_3d_velo):pts_3d_ref = self.project_velo_to_ref(pts_3d_velo)return self.project_ref_to_rect(pts_3d_ref)def corners3d_to_img_boxes(self, corners3d):""":param corners3d: (N, 8, 3) corners in rect coordinate:return: boxes: (None, 4) [x1, y1, x2, y2] in rgb coordinate:return: boxes_corner: (None, 8) [xi, yi] in rgb coordinate"""sample_num = corners3d.shape[0]corners3d_hom = np.concatenate((corners3d, np.ones((sample_num, 8, 1))), axis=2)  # (N, 8, 4)img_pts = np.matmul(corners3d_hom, self.P.T)  # (N, 8, 3)x, y = img_pts[:, :, 0] / img_pts[:, :, 2], img_pts[:, :, 1] / img_pts[:, :, 2]x1, y1 = np.min(x, axis=1), np.min(y, axis=1)x2, y2 = np.max(x, axis=1), np.max(y, axis=1)boxes = np.concatenate((x1.reshape(-1, 1), y1.reshape(-1, 1), x2.reshape(-1, 1), y2.reshape(-1, 1)), axis=1)boxes_corner = np.concatenate((x.reshape(-1, 8, 1), y.reshape(-1, 8, 1)), axis=2)return boxes, boxes_corner# =========================== # ------- 3d to 2d ---------- # =========================== def project_rect_to_image(self, pts_3d_rect):''' Input: nx3 points in rect camera coord.Output: nx2 points in image2 coord.'''pts_3d_rect = self.cart2hom(pts_3d_rect)pts_2d = np.dot(pts_3d_rect, np.transpose(self.P)) # nx3pts_2d[:,0] /= pts_2d[:,2]pts_2d[:,1] /= pts_2d[:,2]return pts_2d[:,0:2]def project_velo_to_image(self, pts_3d_velo):''' Input: nx3 points in velodyne coord.Output: nx2 points in image2 coord.'''pts_3d_rect = self.project_velo_to_rect(pts_3d_velo)return self.project_rect_to_image(pts_3d_rect)# =========================== # ------- 2d to 3d ---------- # =========================== def project_image_to_rect(self, uv_depth):''' Input: nx3 first two channels are uv, 3rd channelis depth in rect camera coord.Output: nx3 points in rect camera coord.'''n = uv_depth.shape[0]x = ((uv_depth[:,0]-self.c_u)*uv_depth[:,2])/self.f_u + self.b_xy = ((uv_depth[:,1]-self.c_v)*uv_depth[:,2])/self.f_v + self.b_ypts_3d_rect = np.zeros((n,3))pts_3d_rect[:,0] = xpts_3d_rect[:,1] = ypts_3d_rect[:,2] = uv_depth[:,2]return pts_3d_rectdef project_image_to_velo(self, uv_depth):pts_3d_rect = self.project_image_to_rect(uv_depth)return self.project_rect_to_velo(pts_3d_rect)def rotx(t):''' 3D Rotation about the x-axis. '''c = np.cos(t)s = np.sin(t)return np.array([[1,  0,  0],[0,  c, -s],[0,  s,  c]])def roty(t):''' Rotation about the y-axis. '''c = np.cos(t)s = np.sin(t)return np.array([[c,  0,  s],[0,  1,  0],[-s, 0,  c]])def rotz(t):''' Rotation about the z-axis. '''c = np.cos(t)s = np.sin(t)return np.array([[c, -s,  0],[s,  c,  0],[0,  0,  1]])def transform_from_rot_trans(R, t):''' Transforation matrix from rotation matrix and translation vector. '''R = R.reshape(3, 3)t = t.reshape(3, 1)return np.vstack((np.hstack([R, t]), [0, 0, 0, 1]))def inverse_rigid_trans(Tr):''' Inverse a rigid body transform matrix (3x4 as [R|t])[R'|-R't; 0|1]'''inv_Tr = np.zeros_like(Tr) # 3x4inv_Tr[0:3,0:3] = np.transpose(Tr[0:3,0:3])inv_Tr[0:3,3] = np.dot(-np.transpose(Tr[0:3,0:3]), Tr[0:3,3])return inv_Trdef read_label(label_filename):lines = [line.rstrip() for line in open(label_filename)]objects = [Object3d(line) for line in lines]return objectsdef load_image(img_filename):return cv2.imread(img_filename)def load_velo_scan(velo_filename):scan = np.fromfile(velo_filename, dtype=np.float32)scan = scan.reshape((-1, 4))return scandef project_to_image(pts_3d, P):'''将3D坐标点投影到图像平面上,生成2D坐pts_3d是一个nx3的矩阵,包含了待投影的3D坐标点(每行一个点),P是相机的投影矩阵,通常是一个3x4的矩阵。函数返回一个nx2的矩阵,包含了投影到图像平面上的2D坐标点。'''''' Project 3d points to image plane.Usage: pts_2d = projectToImage(pts_3d, P)input: pts_3d: nx3 matrixP:      3x4 projection matrixoutput: pts_2d: nx2 matrixP(3x4) dot pts_3d_extended(4xn) = projected_pts_2d(3xn)=> normalize projected_pts_2d(2xn)<=> pts_3d_extended(nx4) dot P'(4x3) = projected_pts_2d(nx3)=> normalize projected_pts_2d(nx2)'''n = pts_3d.shape[0] # 获取3D点的数量pts_3d_extend = np.hstack((pts_3d, np.ones((n,1)))) # 将每个3D点的坐标扩展为齐次坐标形式(4D),通过在每个点的末尾添加1,创建了一个nx4的矩阵。# print(('pts_3d_extend shape: ', pts_3d_extend.shape))pts_2d = np.dot(pts_3d_extend, np.transpose(P)) # 将扩展的3D坐标点矩阵与投影矩阵P相乘,得到一个nx3的矩阵,其中每一行包含了3D点在图像平面上的投影坐标。每个点的坐标表示为[x, y, z]。pts_2d[:,0] /= pts_2d[:,2] # 将投影坐标中的x坐标除以z坐标,从而获得2D图像上的x坐标。pts_2d[:,1] /= pts_2d[:,2] # 将投影坐标中的y坐标除以z坐标,从而获得2D图像上的y坐标。return pts_2d[:,0:2] # 返回一个nx2的矩阵,其中包含了每个3D点在2D图像上的坐标。def compute_box_3d(obj, P):'''计算对象的3D边界框在图像平面上的投影输入: obj代表一个物体标签信息,  P代表相机的投影矩阵-内参。输出: 返回两个值, corners_3d表示3D边界框在 相机坐标系 的8个角点的坐标-3D坐标。corners_2d表示3D边界框在 图像上 的8个角点的坐标-2D坐标。'''# compute rotational matrix around yaw axis# 计算一个绕Y轴旋转的旋转矩阵R,用于将3D坐标从世界坐标系转换到相机坐标系。obj.ry是对象的偏航角R = roty(obj.ry)    # 3d bounding box dimensions# 物体实际的长、宽、高l = obj.l;w = obj.w;h = obj.h;# 3d bounding box corners# 存储了3D边界框的8个角点相对于对象中心的坐标。这些坐标定义了3D边界框的形状。x_corners = [l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2];y_corners = [0,0,0,0,-h,-h,-h,-h];z_corners = [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2];# rotate and translate 3d bounding box# 1、将3D边界框的角点坐标从对象坐标系转换到相机坐标系。它使用了旋转矩阵Rcorners_3d = np.dot(R, np.vstack([x_corners,y_corners,z_corners]))# 3D边界框的坐标进行平移corners_3d[0,:] = corners_3d[0,:] + obj.t[0];corners_3d[1,:] = corners_3d[1,:] + obj.t[1];corners_3d[2,:] = corners_3d[2,:] + obj.t[2];# 2、检查对象是否在相机前方,因为只有在相机前方的对象才会被绘制。# 如果对象的Z坐标(深度)小于0.1,就意味着对象在相机后方,那么corners_2d将被设置为None,函数将返回None。if np.any(corners_3d[2,:]<0.1):corners_2d = Nonereturn corners_2d, np.transpose(corners_3d)# project the 3d bounding box into the image plane# 3、将相机坐标系下的3D边界框的角点,投影到图像平面上,得到它们在图像上的2D坐标。corners_2d = project_to_image(np.transpose(corners_3d), P);return corners_2d, np.transpose(corners_3d)def compute_orientation_3d(obj, P):''' Takes an object and a projection matrix (P) and projects the 3dobject orientation vector into the image plane.Returns:orientation_2d: (2,2) array in left image coord.orientation_3d: (2,3) array in in rect camera coord.'''# compute rotational matrix around yaw axisR = roty(obj.ry)# orientation in object coordinate systemorientation_3d = np.array([[0.0, obj.l],[0,0],[0,0]])# rotate and translate in camera coordinate system, project in imageorientation_3d = np.dot(R, orientation_3d)orientation_3d[0,:] = orientation_3d[0,:] + obj.t[0]orientation_3d[1,:] = orientation_3d[1,:] + obj.t[1]orientation_3d[2,:] = orientation_3d[2,:] + obj.t[2]# vector behind image plane?if np.any(orientation_3d[2,:]<0.1):orientation_2d = Nonereturn orientation_2d, np.transpose(orientation_3d)# project orientation into the image planeorientation_2d = project_to_image(np.transpose(orientation_3d), P);return orientation_2d, np.transpose(orientation_3d)def draw_projected_box3d(image, qs, color=(0,60,255), thickness=2):'''qs: 包含8个3D边界框角点坐标的数组, 形状为(8, 2)。图像坐标下的3D框, 8个顶点坐标。'''''' Draw 3d bounding box in imageqs: (8,2) array of vertices for the 3d box in following order:1 -------- 0/|         /|2 -------- 3 .| |        | |. 5 -------- 4|/         |/6 -------- 7'''qs = qs.astype(np.int32) # 将输入的顶点坐标转换为整数类型,以便在图像上绘制。# 这个循环迭代4次,每次处理一个边界框的一条边。for k in range(0,4):# Ref: http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html# 定义了要绘制的边的起始点和结束点的索引。在这个循环中,它用于绘制边界框的前四条边。i,j=k,(k+1)%4cv2.line(image, (qs[i,0],qs[i,1]), (qs[j,0],qs[j,1]), color, thickness)# 定义了要绘制的边的起始点和结束点的索引。在这个循环中,它用于绘制边界框的后四条边,与前四条边平行i,j=k+4,(k+1)%4 + 4cv2.line(image, (qs[i,0],qs[i,1]), (qs[j,0],qs[j,1]), color, thickness)# 定义了要绘制的边的起始点和结束点的索引。在这个循环中,它用于绘制连接前四条边和后四条边的边界框的边。i,j=k,k+4cv2.line(image, (qs[i,0],qs[i,1]), (qs[j,0],qs[j,1]), color, thickness)return image

运行后会在save_3d_output中保存可视化的图像。

模型推理结果可视化效果:


这个数据集的部分标签不准确!!!

总结:有些失望,不准确的标签占比较大;本来还想着用它替换Kitti的数据集。

只能用来做预训练,或者人工挑选标签做数据清洗。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/135869.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

10-27 maven概念

maven maven的概念模型: 项目对象模型(POM: Project object Model)&#xff0c;一组标准集合: pom.xml 依赖管理系统(Dependency Management System) 项目生命周期(Project Lifecycle) 项目对象模型&#xff1a; 把项目当成一个对象&#xff0c;描述这个项目&#xff0c;使用p…

sql注入学习笔记

sql注入原理 掌握sql注入漏洞的原理掌握sql注入漏洞的分类 万能用户名 777 or 11 #原句 select userid from cms_users where username ".$username." and password".md5 ( $password ) ."输入过后为 select userid from cms_users where username …

Nginx网关配置

安装Nginx 下载最新版本Nginx nginx: download 解压 双击nginx.exe启动 浏览器访问 localhost 看到如下界面 微服务准备 准备两个服务&#xff0c;例如&#xff1a;product微服务和order微服务 分别启动后&#xff0c;访问相应服务接口 product服务 http://localhost:9001/…

【Codeforces】Codeforces Round 905 (Div. 3)

Problem - 1883C - Codeforces 这题当时想复杂了。 题目大意&#xff1a; 给一串数组和一个数字k&#xff0c;求对数组进行多少次操作能是他们的乘积是k的倍数。 操作是选定一个数加上1。 这题需要抓住一个点k属于[2,5]&#xff0c;2&#xff0c;3&#xff0c;4&#xff0c;5中…

将对象与返回的数据所对应的键相同时一一赋值

问题描述 对象与返回的数据直接赋值&#xff0c;会将多余的键与值也添加上 那么赋值时值要 目标对象的键所对应的值 解决方案&#xff1a; 利用双重遍历 来比对 当 键相同时再赋值 duiYingFuZhi(obj,data){for (let key in obj) {for (let index in data) {if (keyindex) {obj…

开发知识点-Pygame

Pygame Pygame最小开发框架与最小游戏游戏开发入门单元开篇 Pygame简介安装游戏开发入门语言开发工具的选择 Pygame最小开发框架与最小游戏 游戏开发入门单元开篇 Pygame简介安装 游戏开发入门语言开发工具的选择

C语言C位出道心法(三):共用体|枚举

C语言C位出道心法(一):基础语法 C语言C位出道心法(二):结构体|结构体指针|链表 一: C语言共用体数据类型认知 二:C语言枚举基本数据类型认知 忙着去耍帅,后期补充完整.............

11 抽象向量空间

抽象向量空间 向量是什么函数什么是线性推论向量空间 这是关于3Blue1Brown "线性代数的本质"的学习笔记。 向量是什么 可以是一个箭头&#xff0c;可以是一组实数&#xff0c;即一个坐标对。 箭头在高维&#xff08;4维&#xff0c;甚至更高&#xff09;空间&…

ReentrantLock

文章目录 1. 简介2. 可重入3. 可中断4. 锁超时5. 使用可重入锁解决哲学家就餐问题6. 公平锁7. 条件变量 1. 简介 ReentrantLock也称为可重入锁&#xff0c;相对于synchronized它有如下特点&#xff1a; 可中断&#xff1a;synchronized获取了锁&#xff0c;除非线程自己结束&…

自然语言处理中的文本聚类:揭示模式和见解

一、介绍 在自然语言处理&#xff08;NLP&#xff09;领域&#xff0c;文本聚类是一种基本且通用的技术&#xff0c;在信息检索、推荐系统、内容组织和情感分析等各种应用中发挥着关键作用。文本聚类是将相似文档或文本片段分组为簇或类别的过程。这项技术使我们能够发现隐藏的…

字符加密A--E,B-F,W--A

文章目录 前言一、题目描述 二、题目分析 三、解题 程序运行代码 前言 本系列为选择结构编程题&#xff0c;点滴成长&#xff0c;一起逆袭。 一、题目描述 二、题目分析 三、解题 程序运行代码 #include<stdio.h> int main(){char c;cgetchar();if(c>a&&…

国潮力量:中国年轻一代如何通过跨境电商推广中国文化

中国国潮&#xff0c;或称国民潮流&#xff0c;是中国年轻一代通过各种方式&#xff0c;如时尚、音乐、文化和艺术&#xff0c;展示他们的文化身份和创新的表达方式。国潮不仅在国内走红&#xff0c;还在国际市场上崭露头角。 其中&#xff0c;跨境电商在国潮的传播和推广中发…

服务器数据恢复—云服务器mysql数据库表被truncate的数据恢复案例

云服务器数据恢复环境&#xff1a; 阿里云ECS网站服务器&#xff0c;linux操作系统mysql数据库。 云服务器故障&#xff1a; 在执行数据库版本更新测试时&#xff0c;在生产库误执行了本来应该在测试库执行的sql脚本&#xff0c;导致生产库部分表被truncate&#xff0c;还有部…

等保评测是什么意思

等保评测是一种信息安全评估标准&#xff0c;是国家信息安全管理机构为确保信息安全而对信息系统的安全性能进行定期评估的行为。它主要用于评估网络安全的实现情况&#xff0c;包括组织和技术。 等保评测具有系统性和综合性&#xff0c;能够及时发现网络安全风险&#xff0c;…

unity - Blend Shape - 变形器 - 实践

文章目录 目的Blend Shape 逐顶点 多个混合思路Blender3Ds maxUnity 中使用Project 目的 拾遗&#xff0c;备份 Blend Shape 逐顶点 多个混合思路 blend shape 基于&#xff1a; vertex number, vertex sn 相同&#xff0c;才能正常混合、播放 也就是 vertex buffer 的顶点数…

云闪付app拉新 地推和网推百搭项目 升级涨价啦 附一手渠道

云闪付为银联的支付产品&#xff0c;在地推网推拉新项目市场里也是比较稳定的项目 可以通过”聚量推客“ 渠道申请推广 今天平台拿到了更好的政策价格 价格再次上涨&#xff0c;地推和网推的小伙伴们可以申请推广哦&#xff0c;百搭项目

从Hugging Face下载数据测试whisper、fast_whisper耗时

时长比较短的音频&#xff1a;https://huggingface.co/datasets/PolyAI/minds14/viewer/en-US 时长比较长的音频&#xff1a;https://huggingface.co/datasets/librispeech_asr?row8 此次测试过程暂时只使用比较短的音频 使用fast_whisper测试 下载安装&#xff0c;参考官方…

51单片机-串口通信

文章目录 前言1.基础介绍2.串口实战3.4. 前言 1.基础介绍 常见1&#xff0c;2&#xff0c;3,电源 常用方式1 fosc外部晶振 2.串口实战 3. 4.

【脑机接口 算法】EEGNet: 通用神经网络应用于脑电信号

EEGNet: 神经网络应用于脑电信号 中文题目论文下载&#xff1a;算法程序下载&#xff1a;摘要1 项目介绍2 EEGNet网络原理2.1EEGNet原理架构2.2FBCCA 算法2.3自适应FBCCA算法 3EEGNet网络实现4结果 中文题目 论文下载&#xff1a; DOI: 算法程序下载&#xff1a; 地址 摘要…

Linux下yum源配置实战

一、Linux下软件包的管理 1、软件安装方式 ① RPM包管理&#xff08;需要单独解决依赖问题&#xff09; ② YUM包管理&#xff08;需要有网络及YUM仓库的支持&#xff0c;会自动从互联网下载软件&#xff0c;自动解决依赖&#xff09; ③ 源码安装&#xff08;安装过程比较…