【K-means聚类算法】实现鸢尾花聚类

文章目录

  • 前言
  • 一、数据集介绍
  • 二、使用步骤
    • 1.导包
    • 1.2加载数据集
    • 1.3绘制二维数据分布图
    • 1.4实例化K-means类,并且定义训练函数
    • 1.5训练
    • 1.6可视化展示
    • 2.聚类算法
    • 2.1.可视化生成
    • 3其他聚类算法进行鸢尾花分类


前言

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。


一、数据集介绍

鸢尾花数据集:鸢尾花开源数据集,共包含150条记录

二、使用步骤

1.导包

import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans 
from sklearn import datasets 

1.2加载数据集

# 直接从sklearn中获取数据集
iris = datasets.load_iris()
X = iris.data[:, :4]    # 表示我们取特征空间中的4个维度
print(X.shape)

1.3绘制二维数据分布图

# 取前两个维度(萼片长度、萼片宽度),绘制数据分布图
plt.scatter(X[:, 0], X[:, 1], c="red", marker='o', label='see')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend(loc=2)
plt.show() 
# 取后两个维度(花瓣长度、花瓣宽度),绘制数据分布图
plt.scatter(X[:, 2], X[:, 3], c="green", marker='+', label='see')
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.legend(loc=2)
plt.show() 

在这里插入图片描述
在这里插入图片描述

1.4实例化K-means类,并且定义训练函数

def Model(n_clusters):estimator = KMeans(n_clusters=n_clusters)# 构造聚类器return estimatordef train(estimator):estimator.fit(X)  # 聚类

1.5训练

# 初始化实例,并开启训练拟合
estimator=Model(4)     
train(estimator)     

1.6可视化展示

label_pred = estimator.labels_  # 获取聚类标签
# 绘制k-means结果
x0 = X[label_pred == 0]
x1 = X[label_pred == 1]
x2 = X[label_pred == 2]
plt.scatter(x0[:, 0], x0[:, 1], c="red", marker='o', label='label0')
plt.scatter(x1[:, 0], x1[:, 1], c="green", marker='*', label='label1')
plt.scatter(x2[:, 0], x2[:, 1], c="blue", marker='+', label='label2')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend(loc=2)
plt.show() # 绘制k-means结果
x0 = X[label_pred == 0]
x1 = X[label_pred == 1]
x2 = X[label_pred == 2]
plt.scatter(x0[:, 2], x0[:, 3], c="red", marker='o', label='label0')
plt.scatter(x1[:, 2], x1[:, 3], c="green", marker='*', label='label1')
plt.scatter(x2[:, 2], x2[:, 3], c="blue", marker='+', label='label2')
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.legend(loc=2)
plt.show() '''# 绘制k-means结果,分成4类,效果并不比3类好。
x0 = X[label_pred == 0]
x1 = X[label_pred == 1]
x2 = X[label_pred == 2]
x3 = X[label_pred == 3]
plt.scatter(x0[:, 2], x0[:, 3], c="red", marker='o', label='label0')
plt.scatter(x1[:, 2], x1[:, 3], c="green", marker='*', label='label1')
plt.scatter(x2[:, 2], x2[:, 3], c="blue", marker='+', label='label2')
plt.scatter(x2[:, 2], x2[:, 3], c="yellow", marker='X', label='label3')
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.legend(loc=2)
plt.show() '''

在这里插入图片描述

2.聚类算法

代码如下(示例):

#1. 函数distEclud()的作用:用于计算两个向量的距离def distEclud(x,y):return np.sqrt(np.sum((x-y)**2)) #2. 函数randCent()的作用: 用来为给定的数据集构建一个包含k个随机质心的集合
def randCent(dataSet,k):# 3.m,n分别被赋值为?#   m = 150  ,n = 4m,n = dataSet.shape centroids = np.zeros((k,n))#4.补充range()中的参数for i in range(k): index = int(np.random.uniform(0,m)) # 产生0到150的随机数(在数据集中随机挑一个向量做为质心的初值)centroids[i,:] = dataSet[index,:] #把对应行的四个维度传给质心的集合# print(centroids)    return centroids# k均值聚类算法
def KMeans(dataSet,k): m = np.shape(dataSet)[0]  #行数150# 第一列存每个样本属于哪一簇(四个簇)# 第二列存每个样本的到簇的中心点的误差# print(m)clusterAssment = np.mat(np.zeros((m,2)))# .mat()创建150*2的矩阵clusterChange = True# 5.centroids = randCent(dataSet,k)的作用:初始化质心centroidscentroids = randCent(dataSet,k)# 6.补充while循环的条件。while clusterChange:clusterChange = False# 遍历所有的样本# 7.补充range()中的参数。for i in range(m):minDist = 100000.0minIndex = -1# 遍历所有的质心#8.补充range()中的参数:for j in range(k):# 计算该样本到3个质心的欧式距离,找到距离最近的那个质心minIndexdistance = distEclud(centroids[j,:],dataSet[i,:])if distance < minDist:#9.补充minDist;minIndex的赋值代码minDist = distance#分类的索引minIndex = j# 更新该行样本所属的簇if clusterAssment[i,0] != minIndex:clusterChange = TrueclusterAssment[i,:] = minIndex,minDist**2#更新质心for j in range(k):pointsInCluster = dataSet[np.nonzero(clusterAssment[:,0].A == j)[0]]  # 获取对应簇类所有的点(x*4)#10.补充axis后的赋值:centroids[j,:] = np.mean(pointsInCluster,axis=0)   # 求均值,产生新的质心# print(clusterAssment[0:150,:])print("cluster complete")return centroids,clusterAssmentdef draw(data,center,assment):length=len(center)fig=plt.figuredata1=data[np.nonzero(assment[:,0].A == 0)[0]]data2=data[np.nonzero(assment[:,0].A == 1)[0]]data3=data[np.nonzero(assment[:,0].A == 2)[0]]# 选取前两个维度绘制原始数据的散点图plt.scatter(data1[:,0],data1[:,1],c="red",marker='o',label='label0')plt.scatter(data2[:,0],data2[:,1],c="green", marker='*', label='label1')plt.scatter(data3[:,0],data3[:,1],c="blue", marker='+', label='label2')# 绘制簇的质心点for i in range(length):plt.annotate('center',xy=(center[i,0],center[i,1]),xytext=\(center[i,0]+1,center[i,1]+1),arrowprops=dict(facecolor='yellow'))#  plt.annotate('center',xy=(center[i,0],center[i,1]),xytext=\# (center[i,0]+1,center[i,1]+1),arrowprops=dict(facecolor='red'))plt.show()# 选取后两个维度绘制原始数据的散点图plt.scatter(data1[:,2],data1[:,3],c="red",marker='o',label='label0')plt.scatter(data2[:,2],data2[:,3],c="green", marker='*', label='label1')plt.scatter(data3[:,2],data3[:,3],c="blue", marker='+', label='label2')# 绘制簇的质心点for i in range(length):plt.annotate('center',xy=(center[i,2],center[i,3]),xytext=\(center[i,2]+1,center[i,3]+1),arrowprops=dict(facecolor='yellow'))plt.show()

2.1.可视化生成

代码如下(示例):

import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets 
iris = datasets.load_iris()
dataSet= iris.data[:, :4]  
k = 3
centroids,clusterAssment = KMeans(dataSet,k)
draw(dataSet,centroids,clusterAssment)

在这里插入图片描述
在这里插入图片描述

3其他聚类算法进行鸢尾花分类

import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans 
from sklearn import datasets 
# 直接从sklearn中获取数据集
iris = datasets.load_iris()
X = iris.data[:, :4]    # 表示我们取特征空间中的4个维度
print(X.shape)
from sklearn.cluster import DBSCAN
# 导入数据集
iris = datasets.load_iris()
X = iris.data[:, :4]  # 取前四个特征
# 使用DBSCAN聚类算法
dbscan = DBSCAN(eps=0.5, min_samples=5)
labels = dbscan.fit_predict(X)
# 绘制分类结果
plt.scatter(X[:, 0], X[:, 1], c=labels)
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.title('DBSCAN Clustering')
plt.show()

在这里插入图片描述

from sklearn.cluster import AgglomerativeClustering
# 使用层次聚类算法
hierarchical = AgglomerativeClustering(n_clusters=3)
labels = hierarchical.fit_predict(X)
# 绘制分类结果
plt.scatter(X[:, 0], X[:, 1], c=labels, marker='+')
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.title('Hierarchical Clustering')
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/135456.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ubuntu20.04 安装cudnn

中文地址是.cn&#xff1a;cuDNN 历史版本 | NVIDIA 开发者 英文地址是.com&#xff1a;cuDNN 历史版本 | NVIDIA 开发者 1、下载cudnn&#xff1a;cudnn-local-repo-ubuntu2004-8.8.1.3_1.0-1_amd64.deb 解压并安装&#xff1a;sudo dpkg -i cudnn-local-repo-ubuntu2004-8.8…

ICC2与PT端口时序上的差别

我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 有星球成员遇到如下问题: 你好,我想问一下就是之前一直遇到一个情况:INtoReg的path_group的时序报告,ICC2里launch的clock network delay(propagated)会有一个值,skew就很小。 但是到PT里launc…

​软考-高级-信息系统项目管理师教程 第四版【第22章-组织通用治理-思维导图】​

软考-高级-信息系统项目管理师教程 第四版【第22章-组织通用治理-思维导图】 课本里章节里所有蓝色字体的思维导图

从F5 BIG-IP RCE漏洞(CVE-2023-46747)来看请求走私的利用价值

0x01 前言 F5 BIG-IP广域流量管理器是一种网络流量管理设备&#xff0c;用于提升链路性能与可用性。F5在金融行业具有特别广泛的使用量&#xff0c;做过各大银行攻防演练的小伙伴对这个系统应该不会陌生。 最近爆出的CVE-2023-46747漏洞能达到远程RCE的效果&#xff0c;属于严重…

9.spark自适应查询-AQE之动态调整Join策略

目录 概述动态调整Join策略原理实战 动态优化倾斜的 Join原理实战 概述 broadcast hash join 类似于 Spark 共享变量中的广播变量&#xff0c;Spark join 如果能采取这种策略&#xff0c;那join 的性能是最好的 自适应查询AQE(Adaptive Query Execution) 动态调整Join策略 原…

代码随想录算法训练营第四十六天丨 动态规划part09

198.打家劫舍 思路 如果刚接触这样的题目&#xff0c;会有点困惑&#xff0c;当前的状态我是偷还是不偷呢&#xff1f; 仔细一想&#xff0c;当前房屋偷与不偷取决于 前一个房屋和前两个房屋是否被偷了。 所以这里就更感觉到&#xff0c;当前状态和前面状态会有一种依赖关系…

Jupyter Notebook 内核似乎挂掉了,它很快将自动重启

报错原因&#xff1a; OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized. OMP: Hint This means that multiple copies of the OpenMP runtime have been linked into the program. That is dangerous, since it can degrade perfo…

uniapp刻度尺的实现(swiper)滑动打分器

实现图&#xff08;百分制&#xff09;&#xff1a;滑动swiper进行打分&#xff0c;分数加减 <view class"scoring"><view class"toggle"><view class"score"><text>{{0}}</text><view class"scoreId&quo…

Apipost-Helper:IDEA中的类postman工具

今天给大家推荐一款IDEA插件&#xff1a;Apipost-Helper-2.0&#xff0c;写完代码IDEA内一键生成API文档&#xff0c;无需安装、打开任何其他软件&#xff1b;写完代码IDEA内一键调试&#xff0c;无需安装、打开任何其他软件&#xff1b;生成API目录树&#xff0c;双击即可快速…

STM32F103C8T6第三天:pwm、sg90、超声波、距离感应按键开盖震动开盖蜂鸣器

1. 定时器介绍1&#xff08;317.21&#xff09; 软件定时&#xff08;之前的定时方法&#xff09;&#xff08;软件延时&#xff09;缺点&#xff1a;不精确、占用CPU资源 void Delay500ms() //11.0592MHz {unsigned char i, j, k;_nop_();i 4;j 129;k 119;do{do{while (-…

微服务-网关设计

文章目录 引言I 网关部署java启动jar包II 其他服务部署细节2.1 服务端api 版本号III 网关常规设置3.1 外部请求系统服务都需要通过网关访问3.2 第三方平台回调校验文件的配置IV 微服务日志跟踪4.1 打印线程ID4.2 封装线程池任务执行器4.3 将自身MDC中的数据复制给子线程4.4 微服…

龙迅LT8911EXB功能概述 MIPICSI/DSI TO EDP

LT8911EXB 描述&#xff1a; Lontium LT8911EXB是MIPIDSI/CSI到eDP转换器&#xff0c;单端口MIPI接收器有1个时钟通道和4个数据通道&#xff0c;每个数据通道最大运行2.0Gbps&#xff0c;最大输入带宽为8.0Gbps。转换器解码输入MIPI RGB16/18/24/30/36bpp、YUV422 16/20/24bp…

PageHelper多表关联查询数量问题

PageHelper多表关联查询数量问题 通常我们会使用PageHelper进行分页查询&#xff0c;但是当分页查询被用到多个表的关联查询中时&#xff0c;就有可能导致查询出来的数据总数比我们想要的多得多。 首先在数据库中创建三个demo表&#xff1a;role、path、role_path role角色表…

WM 报错不含领货点存储类型的存储类型需要部分搁板管理

试图为SAP新建堆放策略维B标准存储类型系统报错如下&#xff1a; 不含领货点存储类型的存储类型需要部分搁板管理 加个P类型的&#xff0c;先保存&#xff0c;然后再改 解决方案&#xff1a; 进入如下配置路径&#xff0c; 新增一个配置条目&#xff0c;如上图示&#xff0c;…

ci-cd的流程

1、项目在gitlab上&#xff0c;从gitlab上使用git插件获取源码&#xff0c;构建成war包&#xff0c;所以使用tomcat作为运行环境 发布 &#xff1a;使用maven插件发布&#xff0c;使用ssh连接。

小米6安装Ubuntu Touch系统也不是很难嘛

序言 这个文章是用来解说,小米6如何安装Ubuntu Touch系统 正文 安装这个系统需要注意的几点 1.手机必须已经解BL锁 2.没了 安装步骤 先双击打开压缩包查看,按照第一步第二步来进行执行,下面是解压图片 第一步 1.打开第一个文件夹 复制刷入rec的命令.txt里面的内容,然后打开红…

HTTP-HTTPS区别详解

一、HTTP协议 1. GET和POST的请求的区别 Post 和 Get 是 HTTP 请求的两种方法&#xff0c;其区别如下&#xff1a; 应用场景&#xff1a; GET 请求是一个幂等的请求&#xff0c;一般 Get 请求用于对服务器资源不会产生影响的场景&#xff0c;比如说请求一个网页的资源。而 Po…

竞赛选题 深度学习火车票识别系统

文章目录 0 前言1 课题意义课题难点&#xff1a; 2 实现方法2.1 图像预处理2.2 字符分割2.3 字符识别部分实现代码 3 实现效果4 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 图像识别 火车票识别系统 该项目较为新颖&#xff0c;适…

百度上线“文心一言”付费版本,AI聊天机器人市场竞争加剧

原创 | 文 BFT机器人 百度不愧是我国AI技术领域的先行者&#xff0c;每年致力于人工智能领域取得技术产品的突破和创新。据爆料称&#xff0c;百度的文心一言有突破了新境界&#xff0c;开创了文心大模型4.0会员版本。从线上的to C产品到试水商业化&#xff0c;百度都是争先走…

kubernetes集群编排——k8s认证授权

pod绑定sa [rootk8s2 ~]# kubectl create sa admin [rootk8s2 secret]# vim pod5.yaml apiVersion: v1 kind: Pod metadata:name: mypod spec:serviceAccountName: admincontainers:- name: nginximage: nginxkubectl apply -f pod5.yamlkubectl get pod -o yaml 认证 [rootk8s…