AM@向量代数@向量基本概念和向量线性运算

文章目录

    • abstract
    • 向量的基本概念
      • 向量
      • 向量的坐标分解式和坐标👺
      • 向量的模@向量的长度(大小)👺
      • 零向量
      • 单位向量👺
      • 方向向量
      • 非零向量的单位向量@正规化
      • 向量夹角👺
    • 向量方向角和向量间夹角@投影
    • 几何描述向量的线性运算
      • 向量的加减运算
        • 向量的三角形三边不等式
      • 数乘
      • 方程的思想求解向量相关问题
    • 向量的线性运算的坐标表示公式

abstract

  • 向量代数@向量基本概念和向量线性运算

向量的基本概念

  • 平面向量和空间向量是类似的,这里主要以空间向量为主讨论

向量

  • 既有大小(模)又有方向的量,称为向量(或矢量)
    • 印刷体常用黑体字母表示向量
    • 手写通常用头箭头表示向量
  • 向量的大小也被称为模
  • 只考虑方向和大小(而不考虑起点)的向量称为自由向量
  • 这里的向量是抽象向量的一个简化版本 n n n个数构成的数组,而在例如高等代数中讨论的,在线性空间中有含义更加广的向量以及更加深刻的性质研究

向量的坐标分解式和坐标👺

  • 向量的坐标(表示):
    • 向量的终点在坐标轴上的投影坐标 a x , a y , a z a_x,a_y,a_z ax,ay,az叫做向量 a \boldsymbol{a} a的坐标,记为 a = ( a x , a y , a z ) \boldsymbol{a}=(a_x,a_y,a_z) a=(ax,ay,az)
    • 向量的坐标分解式= a x i + a y j + a z k a_{x}\boldsymbol{i}+a_{y}\boldsymbol{j}+a_{z}\boldsymbol{k} axi+ayj+azk
  • 更多详见向量坐标分解式相关章节

向量的模@向量的长度(大小)👺

  • 向量的: a T = ( a x , a y , a z ) \boldsymbol{a}^T=(a_x,a_y,a_z) aT=(ax,ay,az),则 ∣ a ∣ = a x 2 + a y 2 + a z 2 |\boldsymbol{a}|=\sqrt{a_x^2+a_y^2+a_z^2} a=ax2+ay2+az2 = ( a x , a y , z y ) ⋅ ( a x , a y , a z ) \sqrt{(a_x,a_y,z_y)\cdot(a_x,a_y,a_z)} (ax,ay,zy)(ax,ay,az)
    • 在空间直角坐标系中,该公式是根据勾股定理得到
    • a ⋅ a = a x 2 + a y 2 + a z 2 \boldsymbol{a}\cdot\boldsymbol{a}=a_x^2+a_y^2+a_z^2 aa=ax2+ay2+az2,这里假设 a \boldsymbol{a} a是列向量
    • 如果引入矩阵乘法(向量内积)的表示方法,还可以写作 ∣ a ∣ = a T a |\boldsymbol{a}|=\sqrt{\boldsymbol{a}^T\boldsymbol{a}} a=aTa ,其中 a T , a \bold{a}^T,\bold{a} aT,a分别是行向量以及其转置得到的列向量

零向量

  • 零向量:模为0的向量称为零向量,其方向可以看作任意的,记为 0 \bold{0} 0 0 ⃗ \vec{0} 0
  • 由于零向量与另一个向量的夹角的取值在 [ 0 , π ] [0,\pi] [0,π]内任意取值,因此可以认为零向量和任意向量平行,也可以认为零向量和任意向量垂直

单位向量👺

  • 单位向量:模为1的向量称为单位向量
    • 通常向量 a \boldsymbol{a} a的同向单位向量记为 a 0 \boldsymbol{a}^{0} a0
    • 对于给定的一个方向 l \boldsymbol{l} l,记该方向的单位向量 e l \boldsymbol{e}_{\boldsymbol{l}} el l 0 \boldsymbol{l}_0 l0 l 0 \boldsymbol{l}^{0} l0,或 u \mathbf{u} u
  • 每个方向都有单位向量,方向相同的向量的单位向量完全相同
  • 不同方向的单位向量长度都为1,但是方向不同
  • 向量的坐标和单位向量表示加法表示
    • i = ( 1 , 0 , 0 ) \boldsymbol i=(1,0,0) i=(1,0,0), j = ( 0 , 1 , 0 ) \boldsymbol j=(0,1,0) j=(0,1,0), k = ( 0 , 0 , 1 ) \boldsymbol k=(0,0,1) k=(0,0,1),它们分别是 x , y , z x,y,z x,y,z轴的方向单位向量
    • a = ( a x , a y , a z ) = a x i + a y j + a z k \boldsymbol{a}=(a_x,a_y,a_z)=a_x\boldsymbol{i}+a_y\boldsymbol{j}+a_z\boldsymbol{k} a=(ax,ay,az)=axi+ayj+azk

方向向量

  • 这个概念在讨论解析几何中的直线时,直线的点向式方程由直线的某个方向向量和直线上的一个点确定
  • 方向向量不一定是单位向量
  • 例如,直线 l l l P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0),直线的某个方向向量为 ( 1 , 2 ) (1,2) (1,2),则方程可以表示为 x − x 0 1 \frac{x-x_0}{1} 1xx0= y − y 0 1 \frac{y-y_0}{1} 1yy0

非零向量的单位向量@正规化

  • 设非零向量 a = ( a x , a y , a z ) a=(a_x,a_y,a_z) a=(ax,ay,az)

    • a 0 = a ∣ a ∣ a^{0}=\frac{a}{|a|} a0=aa= 1 ∣ a ∣ ( a x , a y , a z ) \frac{1}{|a|}(a_x,a_y,a_z) a1(ax,ay,az)
  • 使用范数表示

    • ∣ ∣ a ∣ ∣ ||a|| ∣∣a∣∣表示向量 a a a L 2 L^2 L2范数

    • β = 1 ∣ ∣ α ∣ ∣ α \beta=\frac{1}{||\alpha||}\alpha β=∣∣α∣∣1α的长度一定是1

    • ∣ ∣ β ∣ ∣ ||\beta|| ∣∣β∣∣= ∣ ∣ 1 ∣ ∣ α ∣ ∣ α ∣ ∣ \left|\left|\frac{1}{||\alpha||}\alpha\right|\right| ∣∣α∣∣1α = 1 ∣ ∣ α ∣ ∣ ∣ ∣ α ∣ ∣ = 1 \frac{1}{||\alpha||}||\alpha||=1 ∣∣α∣∣1∣∣α∣∣=1

向量夹角👺

  • 向量夹角
    • 设向量 a = O A → , b = O B → a=\overrightarrow{OA},b=\overrightarrow{OB} a=OA ,b=OB ,则他们的夹角记为 θ = ∠ A O B = < a , b > , 且 θ ∈ [ 0 , π ] \theta=\angle{AOB}=<a,b>,且\theta\in[0,\pi] θ=AOB=<a,b>,θ[0,π]
      • θ = 0 \theta=0 θ=0,则 a , b a,b a,b同向
      • θ = π \theta=\pi θ=π,则 a , b a,b a,b反向
      • 两者统称为 a , b a,b a,b平行,记为 a ∥ b a\parallel{b} ab
      • a = λ b a=\lambda{b} a=λb,则 a , b a,b a,b平行
        • λ > 0 \lambda>0 λ>0, a , b a,b a,b同向
        • λ < 0 \lambda<0 λ<0, a , b a,b a,b反向
    • θ = π 2 \theta=\frac{\pi}{2} θ=2π,则 a ⊥ b a\perp{b} ab

向量方向角和向量间夹角@投影

  • 另见向量的方向角和方向余弦@向量间夹角余弦@投影和向量分量

几何描述向量的线性运算

  • 平面二维向量和空间三维向量的运算类似

向量的加减运算

  • 借助平行四边形或三角形法则,从几何的角度描述向量的加法和减法

  • 并且减法可以转换为加法 a − b = a + ( − b ) \boldsymbol{a}-\boldsymbol{b}=\boldsymbol{a}+(-\boldsymbol{b}) ab=a+(b)

  • 向量加减运算的代数(坐标)运算比较简单,只需要将向量对应分量相加减: a ± b \boldsymbol{a}\pm\boldsymbol{b} a±b= ( a x ± b x , a y ± b y , a z ± b z ) (a_{x}\pm{b_x},a_y\pm{b_y},a_{z}\pm{b_z}) (ax±bx,ay±by,az±bz)

  • 向量加法满足交换律和结合律

  • 在这里插入图片描述

    • c = A B → \boldsymbol{c}=\overrightarrow{AB} c=AB =$\overrightarrow{AO}+\overrightarrow{OB}
      = = =\overrightarrow{OB}-\overrightarrow{OA}$
    • 并且 ∣ a − b ∣ = ∣ b − a ∣ |\boldsymbol{a}-\boldsymbol{b}|=|\boldsymbol{b}-\boldsymbol{a}| ab=ba
向量的三角形三边不等式
  • 由三角形两边之和大于第三边,对应向量三角形法则下的向量加法和向量减法满足不等式:

    • ∣ a + b ∣ ⩽ ∣ a ∣ + ∣ b ∣ |\boldsymbol{a}+\boldsymbol{b}|\leqslant{|\boldsymbol{a}|+|\boldsymbol{b}|} a+ba+b

    • ∣ a − b ∣ |\boldsymbol{a}-\boldsymbol{b}| ab= ∣ b − a ∣ ⩽ ∣ a ∣ + ∣ b ∣ |\boldsymbol{b}-\boldsymbol{a}| \leqslant{|\boldsymbol{a}|+|\boldsymbol{b}|} baa+b

  • 等号在 a , b \bold{a,b} a,b同向或反向时成立

数乘

  • λ \lambda λ是一个数, λ α \lambda{\boldsymbol{\alpha}} λα是一个向量, ∣ λ α ∣ = ∣ λ ∣ ∣ α ∣ |\lambda{\boldsymbol\alpha}|=|\lambda||\boldsymbol\alpha| λα=λ∣∣α

    • λ > 0 \lambda>0 λ>0, λ α \lambda\boldsymbol{\alpha} λα α \boldsymbol{\alpha} α同向
    • λ = 0 \lambda=0 λ=0, λ α = 0 \lambda\boldsymbol{\alpha}=\boldsymbol{0} λα=0
    • λ < 0 \lambda<0 λ<0, λ α \lambda\boldsymbol{\alpha} λα α \boldsymbol{\alpha} α反向
  • 代数表示:设 α = ( a x , a y , a z ) \boldsymbol{\alpha}=(a_{x},a_y,a_z) α=(ax,ay,az),则 λ α = ( λ a x , λ a y , λ a z ) \lambda{\boldsymbol\alpha}=(\lambda{a_x},\lambda{a_y},\lambda{a_z}) λα=(λax,λay,λaz)

  • ∣ λ α ∣ |\lambda\boldsymbol{\alpha}| λα= ( λ a x ) 2 + ( λ a y ) 2 + ( λ a z ) 2 \sqrt{(\lambda a_{x})^2+(\lambda a_{y})^2+(\lambda a_{z})^2} (λax)2+(λay)2+(λaz)2 = λ 2 ( a x 2 + a y 2 + a z 2 ) \sqrt{\lambda^2(a_x^2+a_y^2+a_z^2)} λ2(ax2+ay2+az2) = ∣ λ ∣ ∣ α ∣ |\lambda||\boldsymbol{\alpha}| λ∣∣α

  • 向量的数乘满足结合律和分配律

方程的思想求解向量相关问题

  • 例如求空间中满足某个特征的点的坐标

  • 使用建立方程并解方程的方法可以简化思维过程

  • 在这里插入图片描述

  • A M → = λ M B → \overrightarrow{AM}=\lambda\overrightarrow{MB} AM =λMB , A = ( x 1 , y 1 , z 1 ) , B = ( x 2 , y 2 , z 2 ) A=(x_1,y_1,z_1),B=(x_2,y_2,z_2) A=(x1,y1,z1),B=(x2,y2,z2)

  • 其中:

    • A M → \overrightarrow{AM} AM = O M → − O A → \overrightarrow{OM}-\overrightarrow{OA} OM OA
    • M B → \overrightarrow{MB} MB = O B → − O M → \overrightarrow{OB}-\overrightarrow{OM} OB OM
  • 所以 O M → − O A → = λ ( O B → − O M → ) \overrightarrow{OM}-\overrightarrow{OA} =\lambda(\overrightarrow{OB}-\overrightarrow{OM}) OM OA =λ(OB OM )

    • ( 1 + λ ) O M → (1+\lambda)\overrightarrow{OM} (1+λ)OM = λ O B → + O A → \lambda\overrightarrow{OB}+\overrightarrow{OA} λOB +OA
    • O M → \overrightarrow{OM} OM = 1 1 + λ ( O A → + λ O B → ) \frac{1}{1+\lambda}(\overrightarrow{OA}+\lambda\overrightarrow{OB}) 1+λ1(OA +λOB )= 1 1 + λ ( x 1 + λ x 2 , y 2 + λ y 2 , z 1 + λ z 2 ) \frac{1}{1+\lambda}(x_1+\lambda{x_2},y_2+\lambda{y_2},z_1+\lambda{z_2}) 1+λ1(x1+λx2,y2+λy2,z1+λz2)

向量的线性运算的坐标表示公式

  • 利用坐标作向量的线性运算(加法,减法,数乘)是方便的

  • 向量的坐标分解式对应了坐标在各个轴上的分量

  • 利用相关交换律和结合律,可得

    • a + b \boldsymbol{a+b} a+b= ( a x + b x ) i + ( a y + b y ) j + ( a z + b z ) k = ( a x + b x , a y + b y , a z + b z ) (a_x+b_x)\boldsymbol{i}+(a_y+b_y)\boldsymbol{j}+(a_z+b_z)\boldsymbol{k}=(a_x+b_x,a_y+b_y,a_z+b_z) (ax+bx)i+(ay+by)j+(az+bz)k=(ax+bx,ay+by,az+bz)
    • a − b \boldsymbol{a-b} ab= ( a x − b x ) i + ( a y − b y ) j + ( a z − b z ) k = ( a x − b x , a y − b y , a z − b z ) (a_x-b_x)\boldsymbol{i}+(a_y-b_y)\boldsymbol{j}+(a_z-b_z)\boldsymbol{k}=(a_x-b_x,a_y-b_y,a_z-b_z) (axbx)i+(ayby)j+(azbz)k=(axbx,ayby,azbz)
    • λ a \lambda\boldsymbol{a} λa= λ ( a x , a y , a z ) \lambda(a_x,a_y,a_z) λ(ax,ay,az)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/135094.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux中固定ip端口和修改ip地址

一&#xff0c;更改虚拟网络编辑器 1&#xff0c;首先启动VMware&#xff0c;选择自己要更改ip或固定ip的虚拟机&#xff0c;并找到虚拟网络配编辑器&#xff0c;点击进入 2&#xff0c;进入之后需要点击右下角获取管理员权限后才能修改&#xff0c;有管理员权限之后图片如下 …

技术分享 | app自动化测试(Android)--元素定位方式与隐式等待

元素定位是 UI 自动化测试中最关键的一步&#xff0c;假如没有定位到元素&#xff0c;也就无法完成对页面的操作。那么在页面中如何定位到想要的元素&#xff0c;本小节讨论 Appium 元素定位方式。 Appium的元素定位方式 定位页面的元素有很多方式&#xff0c;比如可以通过 I…

python使用selenium做自动化,最新版Chrome与chromedriver不兼容

目前Chrome版本是118.0.5993.118 下方是版本对应的下载地址&#xff1a; chrome版本118&#xff1a; https://download.csdn.net/download/qq_35845339/88510476 chrome版本119&#xff1a; chromedriverlinux64https://edgedl.me.gvt1.com/edgedl/chrome/chrome-for-testin…

华为取消6000万订单影响在扩大,高通嘴硬强调不受影响

高通公布了2023年第三季度的业绩&#xff0c;业绩显示营收下滑24%&#xff0c;净利润下滑36%&#xff0c;不过高通强调预计今年四季度业绩将回升&#xff0c;意思是说华为取消订单带来的影响较小。 一、高通处境不利已延续4年时间 2019年美国对华为采取措施&#xff0c;众多中国…

优雅设计之美:实现Vue应用程序的时尚布局

本文为翻译文章&#xff0c;原文链接&#xff1a; ** https://fadamakis.com/clean-layout-architecture-for-vue-applications-a738201a2a1e 前言 页面布局是减少代码重复和创建可维护且具有专业外观的应用程序的基本模式。如果使用的是Nuxt&#xff0c;则可以提供开箱即用…

11.8旧有报错与修改

我将uart_done&#xff08;出问题的信号&#xff09;的变量类型设为reg了&#xff0c;也就是我是reg uart_done这个信号的&#xff0c;这样做是错误的&#xff0c;哪怕你在接收模块确实定义的是reg类型&#xff0c;但是在顶层模块的时候&#xff0c;它可以视为是一条单纯的线而…

oled显示器程序(IIC)从stm32f103移植到stm32f429出现bug不显示-解决移植失败问题

出现问题处&#xff1a; 刚开始更换了这两行代码&#xff0c;然后更换位置后&#xff0c;oled正常显示&#xff0c;如下为正确顺序 I2C_Configuration();//配置CPU的硬件I2COLED_Init();//OLED初始化 在这段代码中&#xff0c;I2C_Configuration() 函数用于配置CPU的硬件 I2C…

AJAX-解决回调函数地狱问题

一、同步代码和异步代码 1.同步代码 浏览器是按照我们书写代码的顺序一行一行地执行程序的。浏览器会等待代码的解析和工作&#xff0c;在上一行完成之后才会执行下一行。这也使得它成为一个同步程序。 总结来说&#xff1a;逐行执行&#xff0c;需原地等待结果后&#xff0…

深度学习之基于YoloV5-Deepsort人物识别与追踪系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 YoloV5-Deepsort是一种基于深度学习的人物识别与追踪系统&#xff0c;具有较高的准确率和实时性能。 YoloV5是一种…

【算法与数据结构】77、LeetCode组合

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析&#xff1a;如果k是固定的&#xff0c;最直接的方法就是建立k个for循环&#xff0c;将结果全部压入result容器中。…

一篇文章带你使用(MMKV--基于 mmap 的高性能通用 key-value 组件)

一、MMKV是什么&#xff1f; MMKV 是基于 mmap 内存映射的 key-value 组件&#xff0c;底层序列化/反序列化使用 protobuf 实现&#xff0c;性能高&#xff0c;稳定性强。也是腾讯微信团队使用的技术。 支持的数据类型 支持以下 Java 语言基础类型&#xff1a; boolean、int…

第23章(上)_索引原理之索引与约束

文章目录 索引索引分类主键选择索引的代价 约束外键约束约束与索引的区别 索引使用场景不要使用索引的场景总结 索引 索引的概念&#xff1a;索引是一种有序的存储结构。索引按照单个或多个列的值进行排序。 索引的目的&#xff1a;提升搜索效率。 索引分类 按照数据结构分为…

蓝桥杯双周赛算法心得——串门(双链表数组+双dfs)

大家好&#xff0c;我是晴天学长&#xff0c;树和dfs的结合&#xff0c;其邻接表的存图方法也很重要。需要的小伙伴可以关注支持一下哦&#xff01;后续会继续更新的。&#x1f4aa;&#x1f4aa;&#x1f4aa; 1) .串门 2) .算法思路 串门&#xff08;怎么存图很关键&#xf…

TLS回调函数

TLS在逆向中的作用 TLS回调函数常用于反调试 TLS先于EP代码执行 TLS是什么 TLS是各线程的独立的数据存储空间 使用TLS技术可以在线程内部独立使用或修改进程的全局数据或静态数据 创建和终止某进程时&#xff0c;TLS回调函数都会自动调用执行 使用OD调试TLS函数

ElasticSearch与Lucene是什么关系?Lucene又是什么?

一. ElasticSearch 与 Lucene 的关系 Elasticsearch&#xff08;ES&#xff09;和Apache Lucene之间有密切的关系&#xff0c;可以总结如下&#xff1a; Elasticsearch构建于Lucene之上&#xff1a;Elasticsearch实际上是一个分布式的、实时的搜索和分析引擎&#xff0c;它构建…

直击第一届中国测绘地理信息大会,华测导航强势出圈!

11月8日&#xff0c;由自然资源部指导&#xff0c;中国测绘学会、中国地理信息产业协会和中国卫星导航定位协会共同主办的第一届中国测绘地理信息大会于浙江德清盛大开幕&#xff0c;各家科研院所、企事业单位云集现场&#xff0c;展示科技创新成果。华测导航携多类智能装备及解…

推荐一款功能强大的在线文件预览工具-kkFileView

程序员的公众号&#xff1a;源1024&#xff0c;获取更多资料&#xff0c;无加密无套路&#xff01; 最近整理了一波电子书籍资料&#xff0c;包含《Effective Java中文版 第2版》《深入JAVA虚拟机》&#xff0c;《重构改善既有代码设计》&#xff0c;《MySQL高性能-第3版》&…

超好用的IDEA插件推荐

写完代码还得重复打字编写接口文档&#xff1f;代码量大定位接口定义方法太难找&#xff1f;麻烦&#xff01;写完代码还得复制粘贴到postman进行调试&#xff1f; 这三点太麻烦&#xff1f;今天给大家推荐一款IDEA插件&#xff0c;写完代码IDEA内一键生成API文档&#xff0c;…

企业如何落地搭建商业智能BI系统

随着新一代信息化、数字化技术的应用&#xff0c;引发了新一轮的科技革命&#xff0c;现代化社会和数字化的联系越来越紧密&#xff0c;数据也变成继土地、劳动力、资本、技术之后的第五大生产要素&#xff0c;这一切都表明世界已经找准未来方向&#xff0c;前沿科技也与落地并…

龙芯loongarch64服务器编译安装scipy

前言 根据我之前的文章介绍&#xff0c;龙芯loongarch64服务器中的很多python依赖包安装有问题&#xff0c;发现其中安装的"scikit-learn"就无法正常使用&#xff0c;所有这里在 pip3 install scikit-learn -U -i https://pypi.tuna.tsinghua.edu.cn/simple 的时候发…