SpringCloud 微服务全栈体系(十二)

第十一章 分布式搜索引擎 elasticsearch

一、初识 elasticsearch

1. 了解 ES

1.1 elasticsearch 的作用
  • elasticsearch 是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容

  • 例如:

    • 在 GitHub 搜索代码

    在这里插入图片描述

    • 在电商网站搜索商品

    在这里插入图片描述

    • 在谷歌搜索答案

    在这里插入图片描述

    • 在打车软件搜索附近的车
1.2 ELK 技术栈
  • elasticsearch 结合 kibana、Logstash、Beats,也就是 elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:

在这里插入图片描述

  • 而 elasticsearch 是 elastic stack 的核心,负责存储、搜索、分析数据。

在这里插入图片描述

1.3 elasticsearch 和 lucene
  • elasticsearch 底层是基于lucene来实现的。

  • Lucene是一个 Java 语言的搜索引擎类库,是 Apache 公司的顶级项目,由 DougCutting 于 1999 年研发。官网地址:https://lucene.apache.org/ 。

  • elasticsearch的发展历史:

    • 2004 年 Shay Banon 基于 Lucene 开发了 Compass
    • 2010 年 Shay Banon 重写了 Compass,取名为 Elasticsearch。

在这里插入图片描述

1.4 为什么不是其他搜索技术?
  • 目前比较知名的搜索引擎技术排名:

在这里插入图片描述

  • 虽然在早期,Apache Solr 是最主要的搜索引擎技术,但随着发展 elasticsearch 已经渐渐超越了 Solr,独占鳌头。
1.5 总结
  • 什么是 elasticsearch?

    • 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能
  • 什么是 elastic stack(ELK)?

    • 是以 elasticsearch 为核心的技术栈,包括 beats、Logstash、kibana、elasticsearch
  • 什么是 Lucene?

    • 是 Apache 的开源搜索引擎类库,提供了搜索引擎的核心 API

2. 倒排索引

  • 倒排索引的概念是基于 MySQL 这样的正向索引而言的。
2.1 正向索引
  • 那么什么是正向索引呢?例如给下表(tb_goods)中的 id 创建索引:

在这里插入图片描述

  • 如果是根据 id 查询,那么直接走索引,查询速度非常快。

  • 但如果是基于 title 做模糊查询,只能是逐行扫描数据,流程如下:

1)用户搜索数据,条件是 title 符合"%手机%"

2)逐行获取数据,比如 id 为 1 的数据

3)判断数据中的 title 是否符合用户搜索条件

4)如果符合则放入结果集,不符合则丢弃。回到步骤 1

  • 逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

请添加图片描述

2.2 倒排索引
  • 倒排索引中有两个非常重要的概念:

    • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
    • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条
  • 创建倒排索引是对正向索引的一种特殊处理,流程如下:

    • 将每一个文档的数据利用算法分词,得到一个个词条
    • 创建表,每行数据包括词条、词条所在文档 id、位置等信息
    • 因为词条唯一性,可以给词条创建索引,例如 hash 表结构索引
  • 如图:

在这里插入图片描述

  • 倒排索引的搜索流程如下(以搜索"华为手机"为例):

1)用户输入条件"华为手机"进行搜索。

2)对用户输入内容分词,得到词条:华为手机

3)拿着词条在倒排索引中查找,可以得到包含词条的文档 id:1、2、3。

4)拿着文档 id 到正向索引中查找具体文档。

  • 如图:

请添加图片描述

  • 虽然要先查询倒排索引,再查询正向索引,但是无论是词条、还是文档 id 都建立了索引,查询速度非常快!无需全表扫描。
2.3 正向和倒排
  • 那么为什么一个叫做正向索引,一个叫做倒排索引呢?

    • 正向索引是最传统的,根据 id 索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

    • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到包含词条的文档的 id,然后根据 id 获取文档。是根据词条找文档的过程

  • 是不是恰好反过来了?

  • 那么两者方式的优缺点是什么呢?

2.3.1 正向索引
  • 优点:
    • 可以给多个字段创建索引
    • 根据索引字段搜索、排序速度非常快
  • 缺点:
    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。
2.3.2 倒排索引
  • 优点:
    • 根据词条搜索、模糊搜索时,速度非常快
  • 缺点:
    • 只能给词条创建索引,而不是字段
    • 无法根据字段做排序

3. es 的一些概念

  • elasticsearch 中有很多独有的概念,与 mysql 中略有差别,但也有相似之处。
3.1 文档和字段
  • elasticsearch 是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为 json 格式后存储在 elasticsearch 中:

在这里插入图片描述

  • 而 Json 文档中往往包含很多的字段(Field),类似于数据库中的列。
3.2 索引和映射
  • 索引(Index),就是相同类型的文档的集合。

  • 例如:

    • 所有用户文档,就可以组织在一起,称为用户的索引;
    • 所有商品的文档,可以组织在一起,称为商品的索引;
    • 所有订单的文档,可以组织在一起,称为订单的索引;

请添加图片描述

  • 因此,我们可以把索引当做是数据库中的表。

  • 数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

3.3 mysql 与 elasticsearch
  • 我们统一的把 mysql 与 elasticsearch 的概念做一下对比:
MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是 JSON 格式
ColumnField字段(Field),就是 JSON 文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL 是 elasticsearch 提供的 JSON 风格的请求语句,用来操作 elasticsearch,实现 CRUD
  • 是不是说,学习了 elasticsearch 就不再需要 mysql 了呢?

  • 并不是如此,两者各自有自己的擅长支出:

    • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

    • Elasticsearch:擅长海量数据的搜索、分析、计算

  • 因此在企业中,往往是两者结合使用:

    • 对安全性要求较高的写操作,使用 mysql 实现
    • 对查询性能要求较高的搜索需求,使用 elasticsearch 实现
    • 两者再基于某种方式,实现数据的同步,保证一致性

在这里插入图片描述

4. 安装 es、kibana

4.1 安装 es
4.1.1 部署单点 es
4.1.1.1 创建网络
  • 因为还需要部署 kibana 容器,因此需要让 es 和 kibana 容器互联。这里先创建一个网络:
docker network create es-net
4.1.1.2 加载镜像
  • 采用 elasticsearch 的 7.12.1 版本的镜像,这个镜像体积非常大,接近 1G。
  • 资料提供了镜像的 tar 包。
    见专栏 -> 全栈资料包 -> 资源包/02_cloud

在这里插入图片描述

  • 将其上传到虚拟机中,然后运行命令加载即可:
# 导入数据
docker load -i es.tar
  • 同理还有kibana的 tar 包也需要这样做。
4.1.1.3 运行
  • 运行 docker 命令,部署单点 es:
docker run -d \--name es \-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \-e "discovery.type=single-node" \-v es-data:/usr/share/elasticsearch/data \-v es-plugins:/usr/share/elasticsearch/plugins \--privileged \--network es-net \-p 9200:9200 \-p 9300:9300 \
elasticsearch:7.12.1
  • 命令解释:

    • -e "cluster.name=es-docker-cluster":设置集群名称
    • -e "http.host=0.0.0.0":监听的地址,可以外网访问
    • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小
    • -e "discovery.type=single-node":非集群模式
    • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定 es 的数据目录
    • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定 es 的日志目录
    • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定 es 的插件目录
    • --privileged:授予逻辑卷访问权
    • --network es-net :加入一个名为 es-net 的网络中
    • -p 9200:9200:端口映射配置
  • 在浏览器中输入:http://192.168.150.101:9200 即可看到 elasticsearch 的响应结果:

在这里插入图片描述

4.1.2 部署 kibana
  • kibana 可以给我们提供一个 elasticsearch 的可视化界面。
4.1.2.1 部署
  • 运行 docker 命令,部署 kibana

    docker run -d \
    --name kibana \
    -e ELASTICSEARCH_HOSTS=http://es:9200 \
    --network=es-net \
    -p 5601:5601  \
    kibana:7.12.1
    
    • --network es-net :加入一个名为 es-net 的网络中,与 elasticsearch 在同一个网络中
    • -e ELASTICSEARCH_HOSTS=http://es:9200":设置 elasticsearch 的地址,因为 kibana 已经与 elasticsearch 在一个网络,因此可以用容器名直接访问 elasticsearch
    • -p 5601:5601:端口映射配置
  • kibana 启动一般比较慢,需要多等待一会,可以通过命令查看运行日志:

docker logs -f kibana
  • 此时,在浏览器输入地址访问:http://192.168.150.101:5601,即可看到结果
4.1.2.2 DevTools
  • kibana 中提供了一个 DevTools 界面
  • 这个界面中可以编写 DSL 来操作 elasticsearch。并且对 DSL 语句有自动补全功能。
4.2 安装分词器
4.2.1 在线安装 ik 插件(较慢)
# 进入容器内部
docker exec -it elasticsearch /bin/bash# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip#退出
exit
#重启容器
docker restart elasticsearch
4.2.2 离线安装 ik 插件(推荐)
4.2.2.1 查看数据卷目录
  • 安装插件需要知道 elasticsearch 的 plugins 目录位置,而我们用了数据卷挂载,因此需要查看 elasticsearch 的数据卷目录,通过下面命令查看:
docker volume inspect es-plugins
  • 显示结果:
[{"CreatedAt": "2022-05-06T10:06:34+08:00","Driver": "local","Labels": null,"Mountpoint": "/var/lib/docker/volumes/es-plugins/_data","Name": "es-plugins","Options": null,"Scope": "local"}
]
  • 说明 plugins 目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data 这个目录中。
4.2.2.2 解压缩分词器安装包
  • 把资料中的 ik 分词器解压缩,重命名为 ik
    见专栏 -> 全栈资料包 -> 资源包/02_cloud

在这里插入图片描述

4.2.2.3 上传到 es 容器的插件数据卷中
  • 也就是/var/lib/docker/volumes/es-plugins/_data
4.2.2.4 重启容器
# 重启容器
docker restart es
# 查看es日志
docker logs -f es
4.2.2.5 测试
  • IK 分词器包含两种模式:

    • ik_smart:最少切分

    • ik_max_word:最细切分

GET /_analyze
{"analyzer": "ik_max_word","text": "小帽课堂学习java太棒了"
}
  • 结果
{"tokens" : [{"token" : "小帽","start_offset" : 0,"end_offset" : 2,"type" : "CN_WORD","position" : 0},{"token" : "课堂","start_offset" : 2,"end_offset" : 5,"type" : "CN_WORD","position" : 1},{"token" : "学习","start_offset" : 5,"end_offset" : 7,"type" : "CN_WORD","position" : 2},{"token" : "java","start_offset" : 7,"end_offset" : 11,"type" : "ENGLISH","position" : 3},{"token" : "太棒了","start_offset" : 11,"end_offset" : 14,"type" : "CN_WORD","position" : 4},{"token" : "太棒","start_offset" : 11,"end_offset" : 13,"type" : "CN_WORD","position" : 5},{"token" : "了","start_offset" : 13,"end_offset" : 14,"type" : "CN_CHAR","position" : 6}]
}
4.2.3 扩展词词典
  • 随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给” 等。

  • 所以我们的词汇也需要不断的更新,IK 分词器提供了扩展词汇的功能。

4.2.3.1 打开 IK 分词器 config 目录

在这里插入图片描述

4.2.3.2 在 IKAnalyzer.cfg.xml 配置文件内容添加
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties><comment>IK Analyzer 扩展配置</comment><!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典--><entry key="ext_dict">ext.dic</entry>
</properties>
4.2.3.3 新建一个 ext.dic,可以参考 config 目录下复制一个配置文件进行修改
奥力给
4.2.3.4 重启 elasticsearch
docker restart es# 查看 日志
docker logs -f elasticsearch
  • 日志中已经成功加载 ext.dic 配置文件
4.2.3.5 测试效果
GET /_analyze
{"analyzer": "ik_max_word","text": "小帽学习Java,奥力给!"
}

注意:当前文件的编码必须是 UTF-8 格式,严禁使用 Windows 记事本编辑

4.2.4 停用词词典
  • 在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,那么我们在搜索时也应该忽略当前词汇。

  • IK 分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。

4.2.4.1 IKAnalyzer.cfg.xml 配置文件内容添加
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties><comment>IK Analyzer 扩展配置</comment><!--用户可以在这里配置自己的扩展字典--><entry key="ext_dict">ext.dic</entry><!--用户可以在这里配置自己的扩展停止词字典  *** 添加停用词词典--><entry key="ext_stopwords">stopword.dic</entry>
</properties>
4.2.4.2 在 stopword.dic 添加停用词
神经病
4.2.4.3 重启 elasticsearch
# 重启服务
docker restart elasticsearch
docker restart kibana# 查看 日志
docker logs -f elasticsearch
  • 日志中已经成功加载 stopword.dic 配置文件
4.2.4.4 测试效果
GET /_analyze
{"analyzer": "ik_max_word","text": "小帽课堂学习Java,神经病都点赞,奥力给!"
}

注意:当前文件的编码必须是 UTF-8 格式,严禁使用 Windows 记事本编辑

4.3 部署 es 集群
  • 部署 es 集群可以直接使用 docker-compose 来完成,不过要求 Linux 虚拟机至少有4G的内存空间。
  • 首先编写一个 docker-compose 文件,内容如下:
version: '2.2'
services:es01:image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1container_name: es01environment:- node.name=es01- cluster.name=es-docker-cluster- discovery.seed_hosts=es02,es03- cluster.initial_master_nodes=es01,es02,es03- bootstrap.memory_lock=true- "ES_JAVA_OPTS=-Xms512m -Xmx512m"ulimits:memlock:soft: -1hard: -1volumes:- data01:/usr/share/elasticsearch/dataports:- 9200:9200networks:- elastices02:image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1container_name: es02environment:- node.name=es02- cluster.name=es-docker-cluster- discovery.seed_hosts=es01,es03- cluster.initial_master_nodes=es01,es02,es03- bootstrap.memory_lock=true- "ES_JAVA_OPTS=-Xms512m -Xmx512m"ulimits:memlock:soft: -1hard: -1volumes:- data02:/usr/share/elasticsearch/datanetworks:- elastices03:image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1container_name: es03environment:- node.name=es03- cluster.name=es-docker-cluster- discovery.seed_hosts=es01,es02- cluster.initial_master_nodes=es01,es02,es03- bootstrap.memory_lock=true- "ES_JAVA_OPTS=-Xms512m -Xmx512m"ulimits:memlock:soft: -1hard: -1volumes:- data03:/usr/share/elasticsearch/datanetworks:- elasticvolumes:data01:driver: localdata02:driver: localdata03:driver: localnetworks:elastic:driver: bridge
  • Run docker-compose to bring up the cluster:
docker-compose up
4.4 总结
  • 分词器的作用是什么?

    • 创建倒排索引时对文档分词
    • 用户搜索时,对输入的内容分词
  • IK 分词器有几种模式?

    • ik_smart:智能切分,粗粒度
    • ik_max_word:最细切分,细粒度
  • IK 分词器如何拓展词条?如何停用词条?

    • 利用 config 目录的 IkAnalyzer.cfg.xml 文件添加拓展词典和停用词典
    • 在词典中添加拓展词条或者停用词条

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/134389.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【安全】Java幂等性校验解决重复点击(6种实现方式)

目录 一、简介1.1 什么是幂等&#xff1f;1.2 为什么需要幂等性&#xff1f;1.3 接口超时&#xff0c;应该如何处理&#xff1f;1.4 幂等性对系统的影响 二、Restful API 接口的幂等性三、实现方式3.1 数据库层面&#xff0c;主键/唯一索引冲突3.2 数据库层面&#xff0c;乐观锁…

亚马逊云科技产品测评』活动征文|通过使用Amazon Neptune来预测电影类型初体验

文章目录 福利来袭Amazon Neptune什么是图数据库为什么要使用图数据库什么是Amazon NeptuneNeptune 的特点 快速入门环境搭建notebook 图神经网络快速构建加载数据配置端点Gremlin 查询清理 删除环境S3 存储桶删除 授权声明&#xff1a;本篇文章授权活动官方亚马逊云科技文章转…

chatgpt升级啦,训练数据时间更新到2023年4月,支持tools(升级functionCall),128k上下文

&#xff08;2023年11月7日&#xff09; gpt-4-1106-preview https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo 训练数据日期升级到2023年四月 上线文增加到128k 调用一次chatgpt接口&#xff0c;可以得到多次函数调用 import OpenAI from "openai"…

水利部加快推进小型水库除险加固,大坝安全监测是重点

国务院常务会议明确到2025年前&#xff0c;完成新出现病险水库的除险加固&#xff0c;配套完善重点小型水库雨水情和安全监测设施&#xff0c;实现水库安全鉴定和除险加固常态化。 为加快推进小型水库除险加固前期工作&#xff0c;水利部协调财政部提前下达了2023年度中央补助…

网络流量分类概述

1. 什么是网络流量&#xff1f; 一条网络流量是指在一段特定的时间间隔之内&#xff0c;通过网络中某一个观测点的所有具有相同五元组(源IP地址、目的IP地址、传输层协议、源端口和目的端口)的分组的集合。 比如(10.134.113.77&#xff0c;47.98.43.47&#xff0c;TLSv1.2&…

YOLOv8-Pose推理详解及部署实现

目录 前言一、YOLOv8-Pose推理(Python)1. YOLOv8-Pose预测2. YOLOv8-Pose预处理3. YOLOv8-Pose后处理4. YOLOv8-Pose推理 二、YOLOv8-Pose推理(C)1. ONNX导出2. YOLOv8-Pose预处理3. YOLOv8-Pose后处理4. YOLOv8-Pose推理 三、YOLOv8-Pose部署1. 源码下载2. 环境配置2.1 配置CM…

web前端js基础------制作滚动图片

1&#xff0c;要求 通过定时器使其出现滚动的效果 可以通过按键控制图片滚动的方向&#xff08;设置两个按钮绑定点击事件&#xff09; 当鼠标悬停时图片停止&#xff0c;鼠标离开时图片继续向前滚动&#xff08;可以设置鼠标的悬停和离开事件&#xff09; 参考如下 conten…

揭开堆叠式自动编码器的强大功能

一、介绍 在不断发展的人工智能和机器学习领域&#xff0c;深度学习技术因其处理复杂和高维数据的能力而广受欢迎。在各种深度学习模型中&#xff0c;堆叠式自动编码器是一种多功能且功能强大的工具&#xff0c;可用于特征学习、降维和数据表示。本文探讨了堆叠式自动编码器在深…

【论文阅读】Generating Radiology Reports via Memory-driven Transformer (EMNLP 2020)

资料链接 论文原文&#xff1a;https://arxiv.org/pdf/2010.16056v2.pdf 代码链接&#xff08;含数据集&#xff09;&#xff1a;https://github.com/cuhksz-nlp/R2Gen/ 背景与动机 这篇文章的标题是“Generating Radiology Reports via Memory-driven Transformer”&#xf…

【JAVA】:万字长篇带你了解JAVA并发编程-死锁优化【六】

目录 【JAVA】&#xff1a;万字长篇带你了解JAVA并发编程-并发编程的优化【六】并发编程的优化避免死锁死锁产生的条件避免死锁的方式死锁例程代码使用JpsJstack查看进程死锁问题 避免资源竞争 个人主页: 【⭐️个人主页】 需要您的【&#x1f496; 点赞关注】支持 &#x1f4a…

C#,数值计算——偏微分方程,谱方法的微分矩阵的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// 谱方法的微分矩阵 /// Differentiation matrix for spectral methods /// </summary> public class Weights { public Weights() { …

Spring Boot项目中通过 Jasypt 对属性文件中的账号密码进行加密

下面是在Spring Boot项目中对属性文件中的账号密码进行加密的完整步骤&#xff0c;以MySQL的用户名为root&#xff0c;密码为123321为例&#xff1a; 步骤1&#xff1a;引入Jasypt依赖 在项目的pom.xml文件中&#xff0c;添加Jasypt依赖&#xff1a; <dependency><…

Go语言开发环境安装,hello world!

1. Go开发包SDK https://golang.google.cn/dl/&#xff08;国内也可以安装&#xff09; 根据自己电脑下载对应的安装包&#xff0c;我懒下载了msi安装 然后一路点确定安装Go 2.安装GoLand https://www.jetbrains.com/go/download/#sectionwindows 下载安装包 一路确定安装完…

LoRaWAN物联网架构

与其他网关一样&#xff0c;LoRaWAN网关也需要在规定的工作频率上工作。在特定国家部署网关时&#xff0c;必须要遵循LoRa联盟的区域参数。不过&#xff0c;它是没有通用频率的&#xff0c;每个国家对使用非授权MHZ频段都有不同的法律规定。例如&#xff0c;中国的LoRaWAN频段是…

接口测试工具的实验,Postman、Swagger、knife4j(黑马头条)

一、Postman 最常用的接口测试软件&#xff0c;需要注意点&#xff1a;在进行post请求时&#xff0c;需要选择JSON形式发送 输入JSON字符串&#xff0c;比如&#xff1a; {"maxBehotTime": "2021-04-19 00:19:09","minBehotTime": "2021-…

微信小程序:怎么在一个js中修改另一个js的数据(这里通过缓存进行实现)

实例&#xff1a;现有两个页面index.js和category.js,我现在想在index.js中修改category.js的数据 初始数据 category [{name: 物流配送,list: [{id: 1,job: 外卖骑手,checked: true}, {id: 2,job: 快递员,checked: false}, {id: 3,job: 司机,checked: false}, {id: 4,job: …

Nat. Med. | 基于遗传学原发部位未知癌症的分类和治疗反应预测

今天为大家介绍的是来自Alexander Gusev团队的一篇论文。原发部位未知癌症&#xff08;Cancer of unknown primary&#xff0c;CUP&#xff09;是一种无法追溯到其原发部位的癌症&#xff0c;占所有癌症的3-5&#xff05;。CUP缺乏已建立的靶向治疗方法&#xff0c;导致普遍预后…

支持存档的书签服务LinkWarden

什么是 LinkWarden &#xff1f; Linkwarden 是一个自托管、开源协作书签管理器&#xff0c;用于收集、组织和存档网页。目标是将您在网络上找到的有用网页和文章组织到一个地方&#xff0c;并且由于有用的网页可能会消失&#xff08;参见链接失效的必然性&#xff09;&#xf…

回归模型原理总结及代码实现

前言 本文将介绍回归模型算法&#xff0c;并总结了一些常用的除线性回归模型之外的模型&#xff0c;其中包括一些单模型及集成学习器。 保序回归、多项式回归、多输出回归、多输出K近邻回归、决策树回归、多输出决策树回归、AdaBoost回归、梯度提升决策树回归、人工神经网络、…

Kibana使用Timelion根据时间序列展示数据

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…