Flink SQL 窗口聚合详解

1.滚动窗⼝(TUMBLE)

**滚动窗⼝定义:**滚动窗⼝将每个元素指定给指定窗⼝⼤⼩的窗⼝,滚动窗⼝具有固定⼤⼩,且不重叠。

例如,指定⼀个⼤⼩为 5 分钟的滚动窗⼝,Flink 将每隔 5 分钟开启⼀个新的窗⼝,其中每⼀条数都会划分到唯⼀⼀个 5 分钟的窗⼝中。

在这里插入图片描述

**应⽤场景:**按照⼀分钟对数据进⾏聚合,计算⼀分钟内 PV,UV 数据。

**实际案例:**分维度分钟级别统计在线⽤户数、总销售额。

滚动窗⼝在 1.13 版本之前和 1.13 及版本之后有两种 Flink SQL 实现⽅式

Group Window Aggregation(1.13 之前)和 Windowing TVF(1.13 及之后)

Group Window Aggregation ⽅案(⽀持 Batch\Streaming 任务):

-- 数据源表
CREATE TABLE source_table (-- 维度数据dim STRING,-- ⽤户 iduser_id BIGINT,-- ⽤户price BIGINT,-- 事件时间戳row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),-- watermark 设置WATERMARK FOR row_time AS row_time - INTERVAL '5' SECOND
) WITH ('connector' = 'datagen','rows-per-second' = '10','fields.dim.length' = '1','fields.user_id.min' = '1','fields.user_id.max' = '100000','fields.price.min' = '1','fields.price.max' = '100000'
)-- 数据汇表
CREATE TABLE sink_table (dim STRING,pv BIGINT,sum_price BIGINT,max_price BIGINT,min_price BIGINT,uv BIGINT,window_start bigint
) WITH ('connector' = 'print'
)-- 数据处理逻辑
insert into sink_table
selectdim,count(*) as pv,sum(price) as sum_price,max(price) as max_price,min(price) as min_price,-- 计算 uv 数count(distinct user_id) as uv,UNIX_TIMESTAMP(CAST(tumble_start(row_time, interval '1' minute) AS STRING)) * 10
from source_table
group bydim,tumble(row_time, interval '1' minute)

Group Window Aggregation 滚动窗⼝的 SQL 语法,把 tumble window 的声明写在了 group by ⼦句中,即 tumble(row_time, interval ‘1’ minute) ,第⼀个参数为事件时间的时间戳,第⼆个参数为滚动窗⼝⼤⼩。

Window TVF ⽅案(1.13 只⽀持 Streaming 任务):

-- 数据源表
CREATE TABLE source_table (-- 维度数据dim STRING,-- ⽤户 iduser_id BIGINT,-- ⽤户price BIGINT,-- 事件时间戳row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),-- watermark 设置WATERMARK FOR row_time AS row_time - INTERVAL '5' SECOND
) WITH ('connector' = 'datagen','rows-per-second' = '10','fields.dim.length' = '1','fields.user_id.min' = '1','fields.user_id.max' = '100000','fields.price.min' = '1','fields.price.max' = '100000'
)-- 数据汇表
CREATE TABLE sink_table (dim STRING,pv BIGINT,sum_price BIGINT,max_price BIGINT,min_price BIGINT,uv BIGINT,window_start bigint
) WITH ('connector' = 'print'
)-- 数据处理逻辑
insert into sink_table
SELECTdim,UNIX_TIMESTAMP(CAST(window_start AS STRING)) * 1000 as window_start,count(*) as pv,sum(price) as sum_price,max(price) as max_price,min(price) as min_price,count(distinct user_id) as uv
FROM TABLE(TUMBLE(TABLE source_table, DESCRIPTOR(row_time), INTERVAL '60' SECOND))
GROUP BY window_start, window_end,dim

Windowing TVF 滚动窗⼝的写法把 tumble window 的声明写在了数据源的 Table ⼦句中,包含三部分参数:

TABLE(
TUMBLE(TABLE source_table, DESCRIPTOR(row_time), INTERVAL '60' SECOND)
) 

第⼀个参数 TABLE source_table 声明数据源表;

第⼆个参数 DESCRIPTOR(row_time) 声明数据源的时间戳字段;

第三个参数 INTERVAL ‘60’ SECOND 声明滚动窗⼝⼤⼩为 1 min。

实时场景 SQL 语义: 假设 Orders 为 kafka,target_table 也为 Kafka,这个 SQL ⽣成的实时任务,在执⾏时,会⽣成三个算⼦。

数据源算⼦(From Order):

连接到 Kafka topic,数据源算⼦⼀直运⾏,实时的从 Order Kafka 中⼀条⼀条的读取数据,然后⼀条⼀条发送给下游的 窗⼝聚合算⼦

窗⼝聚合算⼦(TUMBLE 算⼦):

接收到上游算⼦发的⼀条⼀条的数据,然后将每⼀条数据按照时间戳划分到对应的窗⼝中(根据事件时间、处理时间的不同语义进⾏划分),上述案例为事件时间,事件时间中,滚动窗⼝算⼦接收到上游的 Watermark ⼤于窗⼝的结束时间时,则说明当前这⼀分钟的滚动窗⼝已经结束了,将窗⼝计算完的结果发往下游算⼦(⼀条⼀条发给下游 数据汇算⼦ )

数据汇算⼦(INSERT INTO target_table):

接收到上游发的⼀条⼀条的数据,写⼊到 target_table Kafka 中

注意: 事件时间中滚动窗⼝的窗⼝计算触发是由 Watermark 推动的。

2.滑动窗⼝(HOP)

**滑动窗⼝定义:**滑动窗⼝是将元素指定给固定⻓度的窗⼝,与滚动窗⼝功能⼀样,也有窗⼝⼤⼩的概念,不⼀样的地⽅在于,滑动窗⼝有另⼀个参数控制窗⼝计算的频率(滑动窗⼝滑动的步⻓),如果滑动的步⻓⼩于窗⼝⼤⼩,则滑动窗⼝之间每个窗⼝是可以重叠,在这种情况下,⼀条数据就会分配到多个窗⼝当中。

**举例:**有 10 分钟⼤⼩的窗⼝,滑动步⻓为 5 分钟,每 5 分钟会划分⼀次窗⼝,这个窗⼝包含的数据是过去 10 分钟内的数据。

在这里插入图片描述

**应⽤场景:**计算同时在线的数据,要求结果的输出频率是 1 分钟⼀次,每次计算的数据是过去 5 分钟的数据(有的场景下⽤户可能在线,但是可能会 2 分钟不活跃,但是这也要算在同时在线数据中,所以取最近 5 分钟的数据就能计算进去了)

**实际案例:**分维度分钟级别同时在线⽤户数,1 分钟输出⼀次,计算最近 5 分钟的数据,Group Window Aggregation、Windowing TVF 两种⽅案

Group Window Aggregation ⽅案(⽀持 Batch\Streaming 任务):

CREATE TABLE source_table (-- 维度数据dim STRING,-- ⽤户 iduser_id BIGINT,-- ⽤户price BIGINT,-- 事件时间戳row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),-- watermark 设置WATERMARK FOR row_time AS row_time - INTERVAL '5' SECOND
) WITH ('connector' = 'datagen','rows-per-second' = '10','fields.dim.length' = '1','fields.user_id.min' = '1','fields.user_id.max' = '100000','fields.price.min' = '1','fields.price.max' = '100000'
);-- 数据汇表
CREATE TABLE sink_table (dim STRING,uv BIGINT,window_start bigint
) WITH ('connector' = 'print'
);-- 数据处理逻辑
insert into sink_table
SELECT dim,
UNIX_TIMESTAMP(CAST(hop_start(row_time, interval '1' minute, interval '5' minute) AS STRING)) * 10,
count(distinct user_id) as uv
FROM source_table
GROUP BY dim, hop(row_time, interval '1' minute, interval '5' minute)

Group Window Aggregation 滚动窗⼝的写法把 hop window 的声明写在了 group by ⼦句中,即

hop(row_time, interval '1' minute, interval '5' minute) 

第⼀个参数为事件时间的时间戳字段;

第⼆个参数为滑动窗⼝的滑动步⻓;

第三个参数为滑动窗⼝⼤⼩。

Windowing TVF ⽅案(1.13 只⽀持 Streaming 任务):

-- 数据源表
CREATE TABLE source_table (-- 维度数据dim STRING,-- ⽤户 iduser_id BIGINT,-- ⽤户price BIGINT,-- 事件时间戳row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),-- watermark 设置WATERMARK FOR row_time AS row_time - INTERVAL '5' SECOND
) WITH ('connector' = 'datagen','rows-per-second' = '10','fields.dim.length' = '1','fields.user_id.min' = '1','fields.user_id.max' = '100000','fields.price.min' = '1','fields.price.max' = '100000'
);-- 数据汇表
CREATE TABLE sink_table (dim STRING,uv BIGINT,window_start bigint
) WITH ('connector' = 'print'
);-- 数据处理逻辑
insert into sink_table
SELECTdim,UNIX_TIMESTAMP(CAST(window_start AS STRING)) * 1000 as window_start, count(distinct user_id) as bucket_uv
FROM TABLE(HOP(TABLE source_table, DESCRIPTOR(row_time), INTERVAL '1' MINUTES, INTERVAL '5' MINUTES))
GROUP BY window_start, window_end,dim

Windowing TVF 滑动窗⼝的写法把 hop window 的声明写在了数据源的 Table ⼦句中,即

TABLE(HOP(TABLE source_table, DESCRIPTOR(row_time), INTERVAL '1' MINUTES, INTERVAL '5' MINUTES))

第⼀个参数 TABLE source_table 声明数据源表;

第⼆个参数 DESCRIPTOR(row_time) 声明数据源的时间戳;

第三个参数 INTERVAL ‘1’ MINUTES 声明滚动窗⼝滑动步⻓⼤⼩为 1 min。

第四个参数 INTERVAL ‘5’ MINUTES 声明滚动窗⼝⼤⼩为 5 min。

3.Session 窗⼝

**Session 窗⼝定义:**Session 时间窗⼝和滚动、滑动窗⼝不⼀样,其没有固定的持续时间,如果在定义的间隔期(Session Gap)内没有新的数据出现,则 Session 就会窗⼝关闭。

在这里插入图片描述

**实际案例:**计算每个⽤户在活跃期间(⼀个 Session)总共购买的商品数量,如果⽤户 5 分钟没有活动,则视为 Session 断开

⽬前 1.13 版本中 Flink SQL 不⽀持 Session 窗⼝的 Window TVF,只介绍 Group Window Aggregation ⽅案。

Group Window Aggregation ⽅案(⽀持 Batch\Streaming 任务):

-- 数据源表,⽤户购买⾏为记录表
CREATE TABLE source_table (-- 维度数据dim STRING,-- ⽤户 iduser_id BIGINT,-- ⽤户price BIGINT,-- 事件时间戳row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),-- watermark 设置WATERMARK FOR row_time AS row_time - INTERVAL '5' SECOND
) WITH ('connector' = 'datagen','rows-per-second' = '10','fields.dim.length' = '1','fields.user_id.min' = '1','fields.user_id.max' = '100000','fields.price.min' = '1','fields.price.max' = '100000'
);-- 数据汇表
CREATE TABLE sink_table (dim STRING,pv BIGINT, -- 购买商品数量window_start bigint
) WITH ('connector' = 'print'
);-- 数据处理逻辑
insert into sink_table
SELECTdim,UNIX_TIMESTAMP(CAST(session_start(row_time, interval '5' minute) AS STRING)) * 10,count(1) as pv
FROM source_table
GROUP BY dim, session(row_time, interval '5' minute)

**注意:**上述 SQL 任务是在整个 Session 窗⼝结束之后才会把数据输出,Session 窗⼝⽀持 处理时间 和 事件时间,但是处理时间只⽀持在 Streaming 任务中运⾏,Batch 任务不⽀持。

Group Window Aggregation 中 Session 窗⼝的写法把 session window 的声明写在了 group by ⼦句中

session(row_time, interval '5' minute)

第⼀个参数为事件时间的时间戳;

第⼆个参数为 Session gap 间隔。

4.渐进式窗⼝(CUMULATE)

**渐进式窗⼝定义(1.13 只⽀持 Streaming 任务):**渐进式窗⼝可以认为是⾸先开⼀个最⼤窗⼝⼤⼩的滚动窗⼝,然后根据⽤户设置的触发的时间间隔将这个滚动窗⼝拆分为多个窗⼝,这些窗⼝具有相同的窗⼝起点和不同的窗⼝终点。

**示例:**从每⽇零点到当前这⼀分钟绘制累积 UV,其中 10:00 时的 UV 表示从 00:00 到 10:00 的 UV 总数。

在这里插入图片描述

**应⽤场景:**周期内累计 PV,UV 指标(如每天累计到当前这⼀分钟的 PV,UV),这类指标是⼀段周期内的累计状态。

**实际案例:**每天的截⽌当前分钟的累计 money(sum(money)),去重 id 数(count(distinct id)),每天代表渐进式窗⼝⼤⼩为 1 天,分钟代表渐进式窗⼝移动步⻓为分钟级别。

明细输⼊数据:

在这里插入图片描述

预期经过渐进式窗⼝计算的输出数据:

在这里插入图片描述

**特点:**每⼀分钟的输出结果都是当天零点累计到当前的结果,渐进式窗⼝只有 Windowing TVF ⽅案⽀持。

Windowing TVF ⽅案(1.13 只⽀持 Streaming 任务)

-- 数据源表
CREATE TABLE source_table (-- ⽤户 iduser_id BIGINT,-- ⽤户money BIGINT,-- 事件时间戳row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),-- watermark 设置WATERMARK FOR row_time AS row_time - INTERVAL '5' SECOND
) WITH ('connector' = 'datagen','rows-per-second' = '10','fields.user_id.min' = '1','fields.user_id.max' = '100000','fields.money.min' = '1','fields.money.max' = '100000'
);-- 数据汇表
CREATE TABLE sink_table (window_end bigint,window_start bigint,sum_money BIGINT,count_distinct_id bigint
) WITH ('connector' = 'print'
);-- 数据处理逻辑
insert into sink_table
SELECTUNIX_TIMESTAMP(CAST(window_end AS STRING)) * 1000 as window_end, window_start, sum(money) as sum_money,count(distinct user_id) as count_distinct_id
FROM TABLE(CUMULATE(TABLE source_table, DESCRIPTOR(row_time), INTERVAL '60' SECOND, INTERVAL '1' DAY))
GROUP BYwindow_start, window_end

Windowing TVF 滚动窗⼝的写法把 cumulate window 的声明写在了数据源的 Table ⼦句中

TABLE(CUMULATE(TABLE source_table,DESCRIPTOR(row_time),INTERVAL '60' SECOND, INTERVAL '1' DAY)
) 

第⼀个参数 TABLE source_table 声明数据源表;

第⼆个参数 DESCRIPTOR(row_time) 声明数据源的时间戳;

第三个参数 INTERVAL ‘60’ SECOND 声明渐进式窗⼝触发的渐进步⻓为 1 min。

第四个参数 INTERVAL ‘1’ DAY 声明整个渐进式窗⼝的⼤⼩为 1 天,到了第⼆天新开⼀个窗⼝重新累计。

5.Window TVF ⽀持 Grouping Sets、Rollup、Cube

**应⽤场景:**多个维度组合(cube)计算,把每个维度写⼀遍 union all 起来麻烦⽽且会导致⼀个数据源读取多遍。

⽤ Grouping Sets 将维度组合写在⼀条 SQL 中,⽅便且执⾏效率⾼,⽬前 Grouping Sets 只在 Window TVF 中⽀持,不⽀持 Group Window Aggregation。

**示例:**计算每⽇零点累计到当前这⼀分钟的,分汇总、age、sex、age+sex 维度的⽤户数。

-- ⽤户访问明细表
CREATE TABLE source_table (age STRING,sex STRING,user_id BIGINT,row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),WATERMARK FOR row_time AS row_time - INTERVAL '5' SECOND
) WITH ('connector' = 'datagen','rows-per-second' = '1','fields.age.length' = '1','fields.sex.length' = '1','fields.user_id.min' = '1','fields.user_id.max' = '100000'
);CREATE TABLE sink_table (age STRING,sex STRING,uv BIGINT,window_end bigint
) WITH ('connector' = 'print'
);insert into sink_table
SELECTUNIX_TIMESTAMP(CAST(window_end AS STRING)) * 1000 as window_end,if (age is null, 'ALL', age) as age,if (sex is null, 'ALL', sex) as sex,count(distinct user_id) as bucket_uv
FROM TABLE(CUMULATE(TABLE source_table, DESCRIPTOR(row_time), INTERVAL '5' SECOND, INTERVAL '1' DAY))
GROUP BYwindow_start, window_end,-- grouping sets 写法GROUPING SETS ((), (age), (sex), (age, sex))

Flink SQL 中 Grouping Sets 的语法和 Hive SQL 的语法有不同,使⽤ Hive SQL 实现上述 SQL 的语义,实现如下:

insert into sink_table
SELECTUNIX_TIMESTAMP(CAST(window_end AS STRING)) * 1000 as window_end, if (age is null, 'ALL', age) as age,if (sex is null, 'ALL', sex) as sex,count(distinct user_id) as bucket_uv
FROM source_table
GROUP BYage, sex
-- hive sql grouping sets 写法
GROUPING SETS ((), (age), (sex), (age, sex)
)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/132367.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从零开始制作一个割草机器人

项目背景 为啥要做一个割草机器人呢?(个人因素:我梦想就是做一款人形机器人保护人类,解放人类) 基础准备:我们公司本身做过高精度,基于高精度的技术扩展到农机自动化驾驶。目前可以实现AB线拖…

数字人IP为何成家电品牌年轻化营销黑马?

伴随着数字人概念的出现,家电品牌逐渐通过3D虚拟数字人定制,让数字人成为内容、变现一体的IP,形成一定影响力的品牌效应,利用长线内容沉淀粉丝,使品牌实现年轻化营销。 *图片源于网络 如近日在海尔智家旗下品牌发布会上…

uniapp踩坑之项目:uniapp数字键盘组件—APP端

//在components文件夹创建digitKeyboard文件夹&#xff0c;再创建digitKeyboard.vue <!-- 数字键盘 --> <template><view class"digit-keyboard"><view class"digit-keyboard_bg" tap"hide"></view><view clas…

平面扫描(Plane-sweeping)深度体会

先看文章 三维重建之平面扫描算法&#xff08;Plane-sweeping&#xff09;_plane sweeping_小玄玄的博客-CSDN博客 Plane Sweeping | 平面扫描 - 知乎 (zhihu.com) 注意平面Dm,这是其中一个平面&#xff0c;平面上有一个M点&#xff0c;这个点也再物体上。所以会被摄像机看到…

SSD-1B:Segmind的加速稳定扩散模型

Segmind 稳定扩散模型 (SSD-1B) 是稳定扩散 XL (SDXL) 缩小 50% 的精简版本&#xff0c;可提供 60% 的加速&#xff0c;同时保持高质量的文本到图像生成功能。 它已经过各种数据集的训练&#xff0c;包括 Grit 和 Midjourney scrap 数据&#xff0c;以增强其根据文本提示创建各…

docker---dockerfile相关知识

第 3 章 Docker 高级实践 在这一部分我们主要来介绍一些Docker的高级内容&#xff1a; Dockerfile 和 Docker compose 3.1 Dockerfile Dockerfile我们从下面的几个方面来介绍&#xff1a; Dockerfile简介 Dockerfile快速入门 Dockerfile详解 Dockerfile简单 实践 3.1.1 Docke…

python-opencv写入视频文件无法播放

python-opencv写入视频文件无法播放 在采用Python写OpenCV的视频时&#xff0c;生成的视频总是无法播放&#xff0c;大小只有不到两百k&#xff0c;播放器提示视频已经损坏。网上搜了一些方法&#xff0c;记录下解决办法。 代码如下 fourcc cv2.VideoWriter_fourcc(*MJPG) fp…

腾讯云CVM服务器操作系统镜像大全

腾讯云CVM服务器的公共镜像是由腾讯云官方提供的镜像&#xff0c;公共镜像包含基础操作系统和腾讯云提供的初始化组件&#xff0c;公共镜像分为Windows和Linux两大类操作系统&#xff0c;如TencentOS Server、Windows Server、OpenCloudOS、CentOS Stream、CentOS、Ubuntu、Deb…

性能工作站,双十一大促,超值推荐:蝰蛇峡谷 NUC12SNKi7迷你主机,优惠抢购!

近年来&#xff0c;ITX主机和小型化系统变得越来越受欢迎。英特尔的NUC受到许多玩家们的关注。作为mini主机的代表NUC小巧设计和灵活性使它成为很多玩家和科技爱好者的选择。它的高性能和可玩性使得它在迷你型准系统市场上备受推崇。双11来临之际&#xff0c;我们分析下哪款高性…

世微LED 大功率升压恒流驱动芯片 平板显示LED背光板灯串恒流控制器 AP9193

概述 AP9193 是一款高效率、高精度的升 压型大功率 LED 灯恒流驱动控制芯片。 AP9193 内置高精度误差放大器&#xff0c;固 定关断时间控制电路&#xff0c;恒流驱动电路等&#xff0c; 特别适合大功率、多个高亮度 LED 灯的串 恒流驱动。 AP9193 采用固定关断时间的控制方 式…

产业园区中工业厂房的能源综合配置——工业园区综合能源数字化系统建设方案

以下内容转自微信公众号&#xff1a;PPP产业大讲堂&#xff0c;《产业园区中工业厂房的能源综合配置》。 园区工业地产中能源综合配置存在的问题 我国园区工业地产建设已历经近40年的发展, 园区在区域经济发展、产业集聚方面发挥了重要的载体和平台作用, 有力推动了我国社会经…

聊一聊关于手机Charge IC的电流流向

关于手机Charge&#xff0c;小白在以前的文章很少讲&#xff0c;一是这部分东西太多&#xff0c;过于复杂。二是总感觉写起来欠缺点什么。但后来想一想&#xff0c;本是抱着互相学习来写文章的心理态度&#xff0c;还是决定尝试写一些。 关于今天要讲的关于手机Charge的内容&a…

史上最全Windows安全工具汇总

史上最全Windows安全工具锦集来源于网络整理&#xff0c;安全性自测。 下载方式&#xff1a;史上最全Windows安全工具汇总

shiro 框架使用学习

简介 Shiro安全框架是Apache提供的一个强大灵活的安全框架Shiro安全框架提供了认证、授权、企业会话管理、加密、缓存管理相关的功能&#xff0c;使用Shiro可以非常方便的完成项目的权限管理模块开发 Shiro的整体架构 1、Subject ​ Subject即主体&#xff08;可以把当前用户…

Mysql Cluster (NDB - Network Database) - 分布式

Mysql高可用架构 复制&#xff08;Replication&#xff09; 是本文中所有 MySQL 技术的基础。包括&#xff1a;异步复制、半同步复制&#xff0c;增强半同步复制。InnoDB 副本集&#xff08;MySQL InnoDB ReplicaSet&#xff09; 无缝衔接其他 MySQL 官方提供的应用程序&#…

没有MES管理系统,先用数据采集设备能有用吗

在当前的数字化时代&#xff0c;企业纷纷意识到了数字化转型的重要性。数据被誉为新型生产要素&#xff0c;对于企业的运营和决策具有至关重要的作用。在数字化转型的过程中&#xff0c;许多企业面临着一个共同的问题&#xff1a;如何获取所需的数据&#xff1f; 有两家企业在…

偶数矩阵判断【C语言作业】

题目 若一个布尔矩阵所有行和所有列的和都是偶数&#xff0c;则称为偶数矩阵。请编写一个程序&#xff0c;判断一个布尔矩阵是否是偶数矩阵。 要求&#xff1a; &#xff08;1&#xff09;输入:首先输入一个正整数n(n<100),代表该矩阵的大小&#xff0c;接下来是n行n列的矩…

TCP/IP协议群

TCP/IP协议群 什么是TCP/IP协议群 从字面意义上讲&#xff0c;有人可能会认为 TCP/IP 是指 TCP 和 IP 两种协议。实际生活当中有时也确实就是指这两种协议。然而在很多情况下&#xff0c;它只是利用 IP 进行通信时所必须用到的协议群的统称。具体来说&#xff0c;IP 或 ICMP、…

微信小程序 uCharts的使用方法

一、背景 微信小程序项目需要渲染一个柱状图&#xff0c;使用uCharts组件完成 uCharts官网指引&#x1f449;&#xff1a;uCharts官网 - 秋云uCharts跨平台图表库 二、实现效果 三、具体使用 进入官网查看指南&#xff0c;有两种方式进行使用&#xff1a;分别是原生方式与组…

pytorch实现 --- 手写数字识别

本篇文章是博主在人工智能等领域学习时&#xff0c;用于个人学习、研究或者欣赏使用&#xff0c;并基于博主对人工智能等领域的一些理解而记录的学习摘录和笔记&#xff0c;若有不当和侵权之处&#xff0c;指出后将会立即改正&#xff0c;还望谅解。文章分类在Pytorch&#xff…