OpenCV官方教程中文版 —— 图像去噪

OpenCV官方教程中文版 —— 图像去噪

  • 前言
  • 一、原理
  • 二、OpenCV 中的图像去噪
    • 1.cv2.fastNlMeansDenoisingColored()
    • 2.cv2.fastNlMeansDenoisingMulti()

前言

目标

学习使用非局部平均值去噪算法去除图像中的噪音

学习函数 cv2.fastNlMeansDenoising(),cv2.fastNlMeansDenoisingColored()等

一、原理

在前面的章节中我们已经学习了很多图像平滑技术,比如高斯平滑,中值平滑等,当噪声比较小时这些技术的效果都是很好的。在这些技术中我们选取像素周围一个小的邻域然后用高斯平均值或者中值平均值取代中心像素。简单来说,像素级别的噪声去除是限制在局部邻域的。

噪声有一个性质。我们认为噪声是平均值为一的随机变量。考虑一个带噪声的像素点,p = p0 + n,其中 p0 为像素的真实值,n 为这个像素的噪声。我们可以从不同图片中选取大量的相同像素(N)然后计算平均值。理想情况下我们会得到 p = p0。因为噪声的平均值为 0。

通过简单的设置我们就可以去除这些噪声。将一个静态摄像头固定在一个位置连续拍摄几秒钟。这样我们就会得到足够多的图像帧,或者同一场景的大量图像。写一段代码求解这些帧的平均值(这对你来说应该是小菜一碟)。将最终结果与第一帧图像对比一下。你会发现噪声减小了。不幸的是这种简单的方法对于摄像头和运动场景并不总是适用。大多数情况下我们只有一张导游带有噪音的图像。

想法很简单,我们需要一组相似的图片,通过取平均值的方法可以去除噪音。考虑图像中一个小的窗口(5x5),有很大可能图像中的其他区域也存在一个相似的窗口。有时这个相似窗口就在邻域周围。如果我们找到这些相似的窗口并取他们的平均值会怎样呢?对于特定的窗口这样做挺好的。如下图所示。

在这里插入图片描述
上图中的蓝色窗口看起来是相似的。绿色窗口看起来也是相似的。所以我们可以选取包含目标像素的一个小窗口,然后在图像中搜索相似的窗口,最后求取所有窗口的平均值,并用这个值取代目标像素的值。这种方法就是非局部平均值去噪。与我们以前学习的平滑技术相比这种算法要消耗更多的时间,但是结果很好。

对于彩色图像,要先转换到 CIELAB 颜色空间,然后对 L 和 AB 成分分别去噪。

二、OpenCV 中的图像去噪

OpenCV 提供了这种技术的四个变本。

  1. cv2.fastNlMeansDenoising() 使用对象为灰度图。
  2. cv2.fastNlMeansDenoisingColored() 使用对象为彩色图。
  3. cv2.fastNlMeansDenoisingMulti() 适用于短时间的图像序列(灰度图像)
  4. cv2.fastNlMeansDenoisingColoredMulti() 适用于短时间的图像序列(彩色图像)
    共同参数有:
    • h : 决定过滤器强度。h 值高可以很好的去除噪声但也会把图像的细节抹去。(取 10 的效果不错)
    • hForColorComponents : 与 h 相同,但使用与彩色图像。(与 h 相同)
    • templateWindowSize : 奇数。(推荐值为 7)
    • searchWindowSize : 奇数。(推荐值为 21)

1.cv2.fastNlMeansDenoisingColored()

和上面提到的一样,它可以被用来去除彩色图像的噪声。(假设是高斯噪声)。下面是示例。

# -*- coding: utf-8 -*-
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('die.png')
b,g,r = cv2.split(img)
img = cv2.merge([r,g,b])
dst = cv2.fastNlMeansDenoisingColored(img, None, 10, 10, 7, 21)
plt.subplot(121), plt.xticks([]), plt.yticks([]), plt.imshow(img)
plt.subplot(122), plt.xticks([]), plt.yticks([]), plt.imshow(dst)
plt.show()

下面是结果的放大图,我们的输入图像中含有方差为 25 的噪声,下面是结果。
在这里插入图片描述

2.cv2.fastNlMeansDenoisingMulti()

现在我们要对一段视频使用这个方法。第一个参数是一个噪声帧的列表。第二个参数 imgtoDenoiseIndex 设定那些帧需要去噪,我们可以传入一个帧的索引。第三个参数 temporaWindowSize 可以设置用于去噪的相邻帧的数目,它应该是一个奇数。在这种情况下 temporaWindowSize 帧的图像会被用于去噪,中间的帧就是要去噪的帧。例如,我们传入 5 帧图像,imgToDenoiseIndex = 2 和 temporalWindowSize = 3。那么第一帧,第二帧,第三帧图像将被用于第二帧图像的去噪。让我们来看一个例子。

# -*- coding: utf-8 -*-
import numpy as np
import cv2
from matplotlib import pyplot as plt
cap = cv2.VideoCapture('vtest.avi')
# create a list of first 5 frames
img = [cap.read()[1] for i in xrange(5)]
# convert all to grayscale
gray = [cv2.cvtColor(i, cv2.COLOR_BGR2GRAY) for i in img]
# convert all to float64
gray = [np.float64(i) for i in gray]
# create a noise of variance 25
noise = np.random.randn(*gray[1].shape)*10
# Add this noise to images
noisy = [i+noise for i in gray]
# Convert back to uint8
noisy = [np.uint8(np.clip(i,0,255)) for i in noisy]
# Denoise 3rd frame considering all the 5 frames
dst = cv2.fastNlMeansDenoisingMulti(noisy, 2, 5, None, 4, 7, 35)
plt.subplot(131),plt.imshow(gray[2],'gray')
plt.subplot(132),plt.imshow(noisy[2],'gray')
plt.subplot(133),plt.imshow(dst,'gray')
plt.show()

下图是我得到结果的放大版本。

在这里插入图片描述
计算消耗了相当可观的时间。第一张图是原始图像,第二个是带噪音个图像,第三个是去噪音之后的图像。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/130643.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Breakpad在Windows,Linux双平台编译、集成以及dump文件的分析

Breakpad在Windows,Linux双平台编译、集成以及dump文件的分析 1、Windows平台 Windows平台上非常好的参考文档: https://r12f.com/posts/google-breakpad-1-introduction-with-windows/ https://r12f.com/posts/google-breakpad-2-implementations-o…

【大数据】Apache NiFi 数据同步流程实践

Apache NiFi 数据同步流程实践 1.环境2.Apache NIFI 部署2.1 获取安装包2.2 部署 Apache NIFI 3.NIFI 在手,跟我走!3.1 准备表结构和数据3.2 新建一个 Process Group3.3 新建一个 GenerateTableFetch 组件3.4 配置 GenerateTableFetch 组件3.5 配置 DBCP…

答题测评考试小程序的效果如何

在线答题系统是一种在线练习、考试、测评的智能答题系统,适用于企业培训、测评考试、知识竞赛、模拟考试等场景,管理员可任意组题、随机出题,答题者成功提交后,系统自动判分。 多种题目类型,两种答题模式 练习模式&a…

Apache Flink 1.12.0 on Yarn(3.1.1) 所遇到的問題

Apache Flink 1.12.0 on Yarn(3.1.1) 所遇到的問題 新搭建的FLINK集群出现的问题汇总 1.新搭建的Flink集群和Hadoop集群无法正常启动Flink任务 查看这个提交任务的日志无法发现有用的错误信息。 进一步查看yarn日志: 发现只有JobManager的错误日志出现了如下的…

请求地址‘/operlog‘,发生未知异常

👨🏻‍💻 热爱摄影的程序员 👨🏻‍🎨 喜欢编码的设计师 🧕🏻 擅长设计的剪辑师 🧑🏻‍🏫 一位高冷无情的编码爱好者 大家好,我是全栈工…

[nodejs] 爬虫加入并发限制并发实现痞客邦网页截图

今晚想给偶像的相册截个图,避免某一天网站挂了我想看看回忆都不行,用的是js的木偶师来爬虫台湾的部落格,效果图大概是这样,很不错 问题来了.我很贪心, 我想一次性把相册全爬了,也就是并发 ,这个人的相册有19个!!我一下子要开19个谷歌浏览器那个什么进程, 然后程序就崩了, 我就想…

软件设计模式原则(二)开闭原则

继续讲解第二个重要的设计模式原则——开闭原则~ 一.定义 开闭原则,在面向对象编程领域中,规定“软件中的对象(类,模块,函数等等)应该对于扩展是开放的,但是对于修改是封闭的”,这意…

半导体芯片制造行业MES系统解决方案

半导体产业作为现代电子科技的重要支柱,驱动着电子设备和通信技术的飞速发展。随着技术不断演进,半导体制造企业面临着越来越多的挑战,如高度复杂的工艺流程、全球化的竞争、质量控制的要求以及能源效率等问题。 为了应对这些挑战&#xff0…

Python测试之Pytest详解

概要 当涉及到python的测试框架时,pytest是一个功能强大且广泛应用的第三方库。它提供简洁而灵活的方式来编写和执行测试用例,并具有广泛的应用场景。下面是pytest的介绍和详细使用说明: pytest是一个用于python单元测试的框架,它…

Dubbo篇---第一篇

系列文章目录 文章目录 系列文章目录一、说说一次 Dubbo 服务请求流程?二、说说 Dubbo 工作原理三、Dubbo 支持哪些协议?一、说说一次 Dubbo 服务请求流程? 基本工作流程: 上图中角色说明: 二、说说 Dubbo 工作原理 工作原理分 10 层: 第一层:service 层,接口层,…

Flutter 05 组件状态、生命周期、数据传递(共享)、Key

一、Android界面渲染流程UI树与FlutterUI树的设计思路对比 二、Widget组件生命周期详解 1、Widget组件生命周期 和其他的视图框架比如android的Activity一样,flutter中的视图Widget也存在生命周期,生命周期的回调函数体现在了State上面。组件State的生命…

mysql索引深度学习

索引是什么? 索引是一种用于加快查询和索引的数据结构,其本质上就是一种排序好的数据结构,就类似书的目录。 索引的底层有多种实现的结构:b树,b树,Hash,红黑树。InnoDB和MyISAM的索引都是通过…

Python模块psutil:系统进程管理与Selenium效率提升的完美结合

前言 在前面编写一个Selenium的自动化程序时候,发现一个问题。 因笔记本配置较为差,所以每次初始化Selenium的WebDriver都会非常慢,整个等待过程是不友好的。 所以我就想到: 在程序中初始化一个全局的WebDriver对象&#xff0c…

算法——多数相和

三数 15. 三数之和 - 力扣&#xff08;LeetCode&#xff09; 所以代码实现应该是 vector<vector<int>> threeSum(vector<int>& nums) {int n nums.size();sort(nums.begin(), nums.end()); // 对数组进行排序&#xff0c;以便后续操作vector<vector…

快速了解推荐引擎检索技术

目录 一、推荐引擎和其检索技术 二、推荐引擎的整体架构和工作过程 &#xff08;一&#xff09;用户画像 &#xff08;二&#xff09;文章画像 &#xff08;三&#xff09;推荐算法召回 三、基于内容的召回 &#xff08;一&#xff09;召回算法 &#xff08;二&#xf…

C#高级--IO详解

零、文章目录 IO详解 1、IO是什么 &#xff08;1&#xff09;IO是什么 IO是输入/输出的缩写&#xff0c;即Input/Output。在计算机领域&#xff0c;IO通常指数据在内部存储器和外部存储器或其他周边设备之间的输入和输出。输入和输出是信息处理系统&#xff08;例如计算器&…

分享者 - 携程旅游创作者搬砖项目图文教程

大家好&#xff01;携程这个出行旅游平台相信大家都不陌生吧。 每天都有大量的旅客在里面浏览攻略&#xff0c;寻找灵感和旅游建议。 那么&#xff0c;我们的项目就是把一些优质的小红书平台上的旅游攻略或作品&#xff0c;经过处理后搬运到携程平台上发布。 这个项目如何操作呢…

Portraiture4.1.2最新中文汉化版

提起PS后期修图人像美白磨皮&#xff0c;大家会想到各种磨皮工具&#xff0c;其中Portraiture这款磨皮效率超高&#xff0c;是99%摄影师的必备插件&#xff0c;一秒磨皮&#xff0c;无卡顿&#xff0c;效果好&#xff01;人像摄影师人均一款&#xff0c;磨皮质感非常好&#xf…

独创改进 | RT-DETR 引入双向级联特征融合结构 RepBi-PAN | 附手绘结构图原图

本专栏内容均为博主独家全网首发,未经授权,任何形式的复制、转载、洗稿或传播行为均属违法侵权行为,一经发现将采取法律手段维护合法权益。我们对所有未经授权传播行为保留追究责任的权利。请尊重原创,支持创作者的努力,共同维护网络知识产权。 文章目录 YOLOv6贡献RepBi-…

实习记录--(海量数据如何判重?)--每天都要保持学习状态和专注的状态啊!!!---你的未来值得你去奋斗

海量数据如何判重&#xff1f; 判断一个值是否存在&#xff1f;解决方法&#xff1a; 1.使用哈希表&#xff1a; 可以将数据进行哈希操作&#xff0c;将数据存储在相应的桶中。 查询时&#xff0c;根据哈希值定位到对应的桶&#xff0c;然后在桶内进行查找。这种方法的时间复…