大数据毕业设计选题推荐-热门旅游景点数据分析-Hadoop-Spark-Hive

作者主页:IT研究室✨
个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。
☑文末获取源码☑
精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

文章目录

  • 一、前言
  • 二、开发环境
  • 三、系统界面展示
  • 四、代码参考
  • 五、论文参考
  • 六、系统视频
  • 结语

一、前言

随着现代科技的发展和人们生活水平的提高,旅游已经变成了一种日常的休闲方式。同时,大数据技术的出现为旅游行业提供了机遇。通过收集和分析海量的数据,我们能够更深入地理解游客的行为和需求,进一步优化旅游服务,提高游客满意度。因此,基于大数据的热门旅游景点数据分析成为了当前研究的热点问题。本课题旨在通过对旅游规模数据、实时客流量、旅游线路推荐、省内省外游客来源、景点排行、游客驻留时间数据、游客特征等方面的分析,为旅游行业提供更准确的决策支持。

当前,虽然很多旅游企业已经开始利用大数据技术来提升他们的服务,但是在数据收集、处理和分析方面仍然存在一些问题。首先,数据来源不全面,很多旅游企业只能从自己的业务系统中收集数据,忽略了其他来源的数据,如社交媒体、搜索引擎等。其次,数据处理方法不够先进,很多旅游企业仍然采用传统的数据处理方法,无法处理海量数据和实时数据。最后,数据分析不深入,很多旅游企业只是简单地统计数据,没有深入挖掘数据的潜在价值。

本课题的主要目的是通过对热门旅游景点的数据分析,为旅游行业提供更准确的决策支持。具体来说,本课题将实现以下目标:

收集和分析旅游规模数据,了解旅游市场的整体情况;
收集和分析实时客流量数据,预测未来的客流量趋势;
根据游客来源数据,分析不同地区的游客数量和偏好,为旅游线路设计提供参考;
根据景点排行数据,了解游客对不同景点的评价和偏好,为景点优化提供参考;
收集和分析游客驻留时间数据,了解游客在景点的停留时间和游览路线,为景区管理提供参考;
根据游客特征分析,了解不同类型游客的需求和偏好,为个性化服务提供参考。

本课题的研究意义在于为旅游行业提供更准确的决策支持,帮助旅游企业提高服务质量和效率。具体来说,本课题的研究成果将有助于解决当前旅游行业中存在的一些问题,如数据收集不全、数据处理方法落后、数据分析不深入等。同时,本课题的研究成果还将为旅游行业的发展提供新的思路和方法,如基于大数据的旅游线路设计、景点优化和个性化服务等。因此,本课题的研究成果具有重要的理论和实践意义。

二、开发环境

  • 大数据技术:Hadoop、Spark、Hive
  • 开发技术:Python、Django框架、Vue、Echarts、机器学习
  • 软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机

三、系统界面展示

  • 热门旅游景点数据分析界面展示:
    热门旅游景点数据分析
    热门旅游景点数据分析-游客来源数据
    热门旅游景点数据分析-景点排行
    热门旅游景点数据分析-游客驻留时间数据
    热门旅游景点数据分析-景区旅游咨询数据
    热门旅游景点数据分析-游客特征分析
    热门旅游景点数据分析-游客规模数据

四、代码参考

  • 热门旅游景点数据分析项目实战代码参考:
class MySpider:def open(self):self.con = sqlite3.connect("lvyou.db")self.cursor = self.con.cursor()sql = "create table lvyou (title varchar(512),price varchar(16),destination varchar(512),feature text)"try:self.cursor.execute(sql)except:self.cursor.execute("delete from Lvyou")self.baseUrl = "https://huodong.ctrip.com/activity/search/?keyword=%25e9%25a6%2599%25e6%25b8%25af"self.chrome = webdriver.Chrome()self.count = 0self.page = 0self.pageCount = 0def close(self):self.con.commit()self.con.close()def insert(self, title, price, destination, feature):sql = "insert into lvyou (title,price,destination,feature) values (?,?,?,?)"self.cursor.execute(sql, [title, price, destination, feature])def show(self):self.con = sqlite3.connect("lvyou.db")self.cursor = self.con.cursor()self.cursor.execute("select title,price,destination,feature from lvyou")rows = self.cursor.fetchall()for row in rows:print(row)self.con.close()def spider(self, url):try:self.page += 1print("\nPage", self.page, url)self.chrome.get(url)time.sleep(3)html = self.chrome.page_sourceroot = BeautifulSoup(html, "lxml")div = root.find("div", attrs={"id": "xy_list"})divs = div.find_all("div", recursive=False)for i in range(len(divs)):title = divs[i].find("h2").textprice = divs[i].find("span", attrs={"class": "base_price"}).textdestination = divs[i].find("p", attrs={"class": "product_destination"}).find("span").textfeature = divs[i].find("p", attrs={"class": "product_feature"}).textprint(title, '\n预付:', price, "\n", destination, feature)if self.page == 1:link = root.find("div", attrs={"class": "pkg_page basefix"}).find_all("a")[-2]self.pageCount = int(link.text)print(self.pageCount)if self.page < self.pageCount:url = self.baseUrl + "&filters=p" + str(self.page + 1)self.spider(url)self.insert(title, price, destination, feature)except Exception as err:print(err)def process(self):url = "https://huodong.ctrip.com/activity/search/?keyword=%25e9%25a6%2599%25e6%25b8%25af"self.open()self.spider(url)self.close()'''
spider = MySpider()
spider.open()
spider.spider("https://huodong.ctrip.com/activity/search/?keyword=%25e9%25a6%2599%25e6%25b8%25af")
spider.close()
'''
spider = MySpider()while True:print("1.爬取")print("2.显示")print("3.退出")s = input("请选择(1,2,3):")if s == "1":print("Start.....")spider.process()print("Finished......")elif s == "2":spider.show()else:break
class MySpider:def open(self):self.con = MySQLdb.connect(host="127.0.0.1", port=3306, user='root', password="19980507",db="lvyou", charset='utf8')self.cursor = self.con.cursor()sql = "create table lvyou (title varchar(512),price varchar(16),destination varchar(512),feature text)"try:self.cursor.execute(sql)except:self.cursor.execute("delete from lvyou")self.baseUrl = "https://huodong.ctrip.com/activity/search/?keyword=%25e9%25a6%2599%25e6%25b8%25af"self.chrome = webdriver.Chrome()self.count = 0self.page = 0self.pageCount = 0def close(self):self.con.commit()self.con.close()def insert(self, title, price, destination, feature):sql = "insert into lvyou (title,price,destination,feature) values (%s,%s,%s,%s)"self.cursor.execute(sql, [title, price, destination, feature])def show(self):self.con = MySQLdb.connect(host="127.0.0.1", port=3306, user='root', password="19980507",db="lvyou", charset='utf8')self.cursor = self.con.cursor()self.cursor.execute("select title,price,destination,feature from lvyou")rows = self.cursor.fetchall()i=1for row in rows:print(i,row)i+=1print("Total:",len(rows))self.con.close()def spider(self, url):try:self.page += 1print("\nPage", self.page, url)self.chrome.get(url)time.sleep(3)html = self.chrome.page_sourceroot = BeautifulSoup(html, "lxml")div = root.find("div", attrs={"id": "xy_list"})divs = div.find_all("div", recursive=False)for i in range(len(divs)):title = divs[i].find("h2").textprice = divs[i].find("span", attrs={"class": "base_price"}).textdestination = divs[i].find("p", attrs={"class": "product_destination"}).find("span").textfeature = divs[i].find("p", attrs={"class": "product_feature"}).textprint(title, '\n预付:', price, "\n", destination, feature)if self.page == 1:link = root.find("div", attrs={"class": "pkg_page basefix"}).find_all("a")[-2]self.pageCount = int(link.text)print(self.pageCount)if self.page < self.pageCount:url = self.baseUrl + "&filters=p" + str(self.page + 1)self.spider(url)self.insert(title, price, destination, feature)except Exception as err:print(err)def process(self):url = "https://huodong.ctrip.com/activity/search/?keyword=%25e9%25a6%2599%25e6%25b8%25af"self.open()self.spider(url)self.close()'''
spider = MySpider()
spider.open()
spider.spider("https://huodong.ctrip.com/activity/search/?keyword=%25e9%25a6%2599%25e6%25b8%25af")
spider.close()
'''
spider = MySpider()while True:print("1.爬取")print("2.显示")print("3.退出")s = input("请选择(1,2,3):")if s == "1":print("Start.....")spider.process()print("Finished......")elif s == "2":spider.show()else:break

五、论文参考

  • 计算机毕业设计选题推荐-热门旅游景点数据分析论文参考:
    计算机毕业设计选题推荐-热门旅游景点数据分析论文参考

六、系统视频

热门旅游景点数据分析项目视频:

大数据毕业设计选题推荐-热门旅游景点数据分析-Hadoop

结语

大数据毕业设计选题推荐-热门旅游景点数据分析-Hadoop-Spark-Hive
大家可以帮忙点赞、收藏、关注、评论啦~
源码获取:私信我

精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/130019.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于蜜獾算法的无人机航迹规划-附代码

基于蜜獾算法的无人机航迹规划 文章目录 基于蜜獾算法的无人机航迹规划1.蜜獾搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要&#xff1a;本文主要介绍利用蜜獾算法来优化无人机航迹规划。 1.蜜獾搜索算法 …

HTTPS的加密方式超详细解读

在了解https的加密方式之前&#xff0c;我们需要先行了解两个特别经典的传统加密方式&#xff1a; 1、对称加密 1.1、定义 需要对加密和解密使用相同密钥的加密算法。所谓对称&#xff0c;就是采用这种加密方法的双方使用方式用同样的密钥进行加密和解密。密钥是控制加密及解…

二叉树采用二叉链表存储:编写计算二叉树最大宽度的算法(二叉树的最大宽度是指二叉树所有层中结点个数的最大值)

二叉树采用二叉链表存储&#xff1a;编写计算二叉树最大宽度的算法 &#xff08;二叉树的最大宽度是指二叉树所有层中结点个数的最大值&#xff09; 和二叉树有关的代码&#xff0c;基本都逃不过“先中后层”&#xff0c;这四种遍历 而我们这里是让你计算最大宽度&#xff0c…

如何使用Selenium处理Cookie,今天彻底学会了

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…

【Linux】Nignx的入门使用负载均衡动静分离(前后端项目部署)---超详细

一&#xff0c;Nignx入门 1.1 Nignx是什么 Nginx是一个高性能的开源Web服务器和反向代理服务器。它使用事件驱动的异步框架&#xff0c;可同时处理大量请求&#xff0c;支持负载均衡、反向代理、HTTP缓存等常见Web服务场景。Nginx可以作为一个前端的Web服务器&#xff0c;也可…

VUE2和VUE3思维导图知识体系总结大对比

VUE2知识体系 VUE3知识体系 思维导图原件下载地址

前端难学还是后端难学?系统安全,web安全,网络安全是什么区别?

系统安全&#xff0c;web安全&#xff0c;网络安全是什么区别&#xff1f;三无纬度安全问题 系统安全&#xff0c;可以说是电脑软件的安全问题&#xff0c;比如windows经常提示修复漏洞&#xff0c;是一个安全问题 网页安全&#xff0c;网站安全&#xff0c;比如&#xff0c;…

【t5 pytorch版源码学习】t5-pegasus-pytorch源码学习

0. 项目来源 中文生成式预训练模型&#xff0c;以mT5为基础架构和初始权重&#xff0c;通过类似PEGASUS的方式进行预训练。 bert4keras版&#xff1a;t5-pegasus pytorch版&#xff1a;t5-pegasus-pytorch 本次主要学习pytorch版的代码解读。 项目结构&#xff1a; train…

Unity地面交互效果——3、曲面细分基础知识

大家好&#xff0c;我是阿赵。   之前介绍了使用动态法线贴图混合的方式模拟轨迹的凹凸感&#xff0c;这次来讲一下更真实的凹凸感制作。不过在说这个内容之前&#xff0c;这一篇先要介绍一下曲面细分着色器(Tessellation Shader)的用法。 一、为什么要做曲面细分 之前通过法…

canal+es+kibana+springboot

1、环境准备 服务器&#xff1a;Centos7 Jdk版本&#xff1a;1.8 Mysql版本&#xff1a;5.7.44 Canal版本&#xff1a;1.17 Es版本&#xff1a;7.12.1 kibana版本&#xff1a;7.12.1 软件包下载地址&#xff1a;链接&#xff1a;https://pan.baidu.com/s/1jRpCJP0-hr9aI…

【计算机网络】网络层:数据平面

一.网络层概述 每台路由器的数据平面的主要功能时从其输入链路向其输出链路转发数据报&#xff0c;控制平面的主要功能是协调这些本地的每路由转发动作&#xff0c;使得数据报沿着源和目的地主机之间的路由器路径最终进行端到端传送。 网络层不运行运输层和应用层协议。 转发是…

Pytorch网络模型训练

现有网络模型的使用与修改 vgg16_false torchvision.models.vgg16(pretrainedFalse) # 加载一个未预训练的模型 vgg16_true torchvision.models.vgg16(pretrainedTrue) # 把数据分为了1000个类别print(vgg16_true) 以下是vgg16预训练模型的输出 VGG((features): S…

FFmpeg直播能力更新计划与新版本发布

// 编者按&#xff1a;客户端作为直接面向用户大众的接口&#xff0c;随着技术的发展进化与时俱进&#xff0c;实现更好的服务是十分必要的。FFmpeg作为最受欢迎的视频和图像处理开源软件&#xff0c;被相关行业的大量用户青睐&#xff0c;而随着HEVC标准的发布到广泛使用&am…

【jvm】虚拟机栈

目录 一、背景二、栈与堆三、声明周期四、作用五、特点&#xff08;优点&#xff09;六、可能出现的异常七、设置栈内存大小八、栈的存储单位九、栈运行原理十、栈帧的内部结构10.1 说明10.2 局部变量表10.3 操作数栈10.4 动态链接10.5 方法返回地址10.6 一些附加信息 十一、代…

整理10个地推拉新app接单平台,免费一手推广渠道平台干货分享

1. 聚量推客&#xff1a; “聚量推客”汇聚了众多市场上有的和没有的地推网推拉新接单项目&#xff0c;目前比较火热&#xff0c;我们做地推和网推从业者如果长期在这行业去做推广可以使用这个平台&#xff0c;价格高数据也好&#xff0c;大部分拉新项目也都是官签一手资源 一…

关于Intel Press出版的《Bedyong BIOS》第2版的观后感

文章目录 此书的背景UEFI运行时DXE基础CPU架构协议PCI协议UEFI驱动的初始化串口DXE驱动示例 《Beyond BIOS》首先介绍一个简单的UEFI应用程序模块&#xff0c;用于展示UEFI应用程序的行为。作者为Waldo。该模块名为“InitializeHelloApplication”&#xff0c;它接受两个参数&a…

Leetcode—101.对称二叉树【简单】

2023每日刷题&#xff08;十九&#xff09; Leetcode—101.对称二叉树 利用Leetcode101.对称二叉树的思想的实现代码 /*** Definition for a binary tree node.* struct TreeNode {* int val;* struct TreeNode *left;* struct TreeNode *right;* };*/ bool isSa…

【深度学习基础】Pytorch框架CV开发(1)基础铺垫

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…

3 — NLP 中的标记化:分解文本数据的艺术

一、说明 这是一个系列文章的第三篇文章&#xff0c; 文章前半部分分别是&#xff1a; 1 、NLP 的文本预处理技术 2、NLP文本预处理技术&#xff1a;词干提取和词形还原 在本文中&#xff0c;我们将介绍标记化主题。在开始之前&#xff0c;我建议您阅读我之前介绍的关…

Docker的简单安装

安装环境 CentOS Linux release 8.1.1911 (Core)内核4.18.0-147.el8.x86_64Mini Installation 安装前的准备工作 切换国内源 由于centos源已经过期&#xff0c;所以切换为阿里云的yum源&#xff0c;第二个是docker的仓库 wget -O /etc/yum.repos.d/CentOS-Base.repo https:…