【3D图像分割】基于 Pytorch 的 VNet 3D 图像分割3(3D UNet 模型篇)

在本文中,主要是对3D UNet 进行一个学习和梳理。对于3D UNet 网上的资料和GitHub直接获取的代码很多,不需要自己从0开始。那么本文的目的是啥呢?

本文就是想拆解下其中的结构,看看对于一个3DUNet,和2DUNet,究竟有什么不同?如果是你自己构建,有什么样的经验和技巧可以学习。

3DUNet的论文地址:3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation

对于2DUNet感兴趣的小伙伴,可以先跳转去这里:【BraTS】Brain Tumor Segmentation 脑部肿瘤分割2(UNet的复现);相信阅读完,你会对这个模型,心中已经有了结构。

对本系列的其他篇章,点击下面👇链接:

  • 【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割1(综述篇)
  • 【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割2(基础数据流篇)
  • 【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割6(数据预处理)
  • 【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割7(数据预处理)
  • 【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割8(CT肺实质分割)
  • 【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割9(patch 的 crop 和 merge 操作)

一、 3D UNet 结构剖析

unet无论是2D,还是3D,从整体结构上进行划分,大体可以分位以下两个阶段:

  1. 下采样的阶段,也就是U的左边(encoder),负责对特征提取;
  2. 上采样的阶段,也就是U的右边(decoder),负责对预测恢复。

如下图展示的这样:
1

其中:

  • 蓝色框表示的是特征图;
  • 绿色长箭头,是concat操作;
  • 橘色三角,是conv+bn+relu的组合;
  • 红色的向下箭头,是max pool
  • 黄色的向上箭头,是up conv
  • 最后的紫色三角,是conv,恢复了最终的输出特征图;

对于模型构建这块,可以在论文中,看看作者是如何描述网络结构的:

  1. Like the standard u-net, it has an analysis and a synthesis path each with four resolution steps.
  2. In the analysis path, each layer contains two 3 × 3 × 3 convolutions each followed by a rectified linear unit (ReLu), and then a 2 × 2 × 2 max pooling with strides of two in each dimension.
  3. In the synthesis path, each layer consists of an upconvolution of 2 × 2 × 2 by strides of two in each dimension, followed by two 3 × 3 × 3 convolutions each followed by a ReLu.
  4. Shortcut connections from layers of equal resolution in the analysis path provide the essential high-resolution features to the synthesis path.
  5. In the last layer a 1×1×1 convolution reduces the number of output channels to the number of labels which is 3 in our case.

从论文中的网络结构示意图也可以发现:

  1. 水平看,每一个小块,基本都是三个特征图,最后一层除外;
  2. 水平看,每个特征图之间,都是橘色三角,是conv+bn+relu的组合,最后一层除外;
  3. encoder阶段,连接各个水平块的,是下采样;
  4. decoder阶段,连接各个水平块的,是反卷积(upconvolution);
  5. 还有就是绿色长箭头的concat,和最后的conv输出特征图。

二、 3D UNet 复现

复线在3D UNet前,可以先参照下相对简单,且很深渊源的2D UNet结构。其中被多次使用的一个水平块中,也是两个conv+bn+relu的组合,2D UNet的构建如下所示:

class ConvBlock2d(nn.Module):def __init__(self, in_ch, out_ch):super(ConvBlock2d, self).__init__()# 第1个3*3的卷积层self.conv1 = nn.Sequential(nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1),nn.BatchNorm2d(out_ch),nn.ReLU(inplace=True),)# 第2个3*3的卷积层self.conv2 = nn.Sequential(nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1),nn.BatchNorm2d(out_ch),nn.ReLU(inplace=True),)# 定义数据前向流动形式def forward(self, x):x = self.conv1(x)x = self.conv2(x)return x

而在3D UNet的一个水平块中,同样是两个conv+bn+relu的组合,如下所示:

is_elu = False
def activateELU(is_elu, nchan):if is_elu:return nn.ELU(inplace=True)else:return nn.PReLU(nchan)def ConvBnActivate(in_channels, middle_channels, out_channels):# This is a block with 2 convolutions# The first convolution goes from in_channels to middle_channels feature maps# The second convolution goes from middle_channels to out_channels feature mapsconv = nn.Sequential(nn.Conv3d(in_channels, middle_channels, stride=1, kernel_size=3, padding=1),nn.BatchNorm3d(middle_channels),activateELU(is_elu, middle_channels),nn.Conv3d(middle_channels, out_channels, stride=1, kernel_size=3, padding=1),nn.BatchNorm3d(out_channels),activateELU(is_elu, out_channels),)return conv

2.1、模块搭建

可以发现,nn.Conv2d变成了nn.Conv3dnn.BatchNorm2d变成了nn.BatchNorm3d。遵照这个规则,构建下采样MaxPool3d、上采样反卷积ConvTranspose3d,以及最后紫色一层卷积,输出特征层FinalConvolution,如下:

def DownSample():# It halves the spatial dimensions on every axes (x,y,z)return nn.MaxPool3d(kernel_size=2, stride=2)def UpSample(in_channels, out_channels):# It doubles the spatial dimensions on every axes (x,y,z)return nn.ConvTranspose3d(in_channels, out_channels, kernel_size=2, stride=2)def FinalConvolution(in_channels, out_channels):return nn.Conv3d(in_channels, out_channels, kernel_size=1)

除此之外,绿色长箭头,concat操作,是在水平方向上,也就是列上进行组合,如下所示:

def CatBlock(x1, x2):return torch.cat((x1, x2), 1)

至此,构建模型所需要的各个组块,都准备完毕了。接下来就是构建模型,将各个组块搭起来。其中有个规律:

  • encoder中第一conv+bn+relu外,每一次前都需要下采样;
  • decoder中,每一个conv+bn+relu前,都需要上采样;
  • 并且,decoder中第一个conv操作,需要进行concat操作;
  • DownSamplechannel不变,特征图尺寸变小;
  • UpSamplechannel不变,特征图尺寸变大;

那就把这些规则,根据图示给加上,组合后的一个类,就如下所示:

import torch
import torch.nn as nn
import torch.nn.functional as Fclass UNet3D(nn.Module):def __init__(self, num_out_classes=2, input_channels=1, init_feat_channels=32):super().__init__()# Encoder layers definitionsself.down_sample = DownSample()self.init_conv = ConvBnActivate(input_channels, init_feat_channels, init_feat_channels*2)self.down_conv1 = ConvBnActivate(init_feat_channels*2, init_feat_channels*2, init_feat_channels*4)self.down_conv2 = ConvBnActivate(init_feat_channels*4, init_feat_channels*4, init_feat_channels*8)self.down_conv3 = ConvBnActivate(init_feat_channels*8, init_feat_channels*8, init_feat_channels*16)# Decoder layers definitionsself.up_sample1 = UpSample(init_feat_channels*16, init_feat_channels*16)self.up_conv1   = ConvBnActivate(init_feat_channels*(16+8), init_feat_channels*8, init_feat_channels*8)self.up_sample2 = UpSample(init_feat_channels*8, init_feat_channels*8)self.up_conv2   = ConvBnActivate(init_feat_channels*(8+4), init_feat_channels*4, init_feat_channels*4)self.up_sample3 = UpSample(init_feat_channels*4, init_feat_channels*4)self.up_conv3   = ConvBnActivate(init_feat_channels*(4+2), init_feat_channels*2, init_feat_channels*2)self.final_conv = FinalConvolution(init_feat_channels*2, num_out_classes)# Softmaxself.softmax = F.softmaxdef forward(self, image):# Encoder Part ## B x  1 x Z x Y x Xlayer_init = self.init_conv(image)# B x 64 x Z x Y x Xmax_pool1  = self.down_sample(layer_init)# B x 64 x Z//2 x Y//2 x X//2layer_down2 = self.down_conv1(max_pool1)# B x 128 x Z//2 x Y//2 x X//2max_pool2   = self.down_sample(layer_down2)# B x 128 x Z//4 x Y//4 x X//4layer_down3 = self.down_conv2(max_pool2)# B x 256 x Z//4 x Y//4 x X//4max_pool_3  = self.down_sample(layer_down3)# B x 256 x Z//8 x Y//8 x X//8layer_down4 = self.down_conv3(max_pool_3)# B x 512 x Z//8 x Y//8 x X//8# Decoder part #layer_up1 = self.up_sample1(layer_down4)# B x 512 x Z//4 x Y//4 x X//4cat_block1 = CatBlock(layer_down3, layer_up1)# B x (256+512) x Z//4 x Y//4 x X//4layer_conv_up1 = self.up_conv1(cat_block1)# B x 256 x Z//4 x Y//4 x X//4layer_up2 = self.up_sample2(layer_conv_up1)# B x 256 x Z//2 x Y//2 x X//2cat_block2 = CatBlock(layer_down2, layer_up2)# B x (128+256) x Z//2 x Y//2 x X//2layer_conv_up2 = self.up_conv2(cat_block2)# B x 128 x Z//2 x Y//2 x X//2layer_up3 = self.up_sample3(layer_conv_up2)# B x 128 x Z x Y x Xcat_block3 = CatBlock(layer_init, layer_up3)# B x (64+128) x Z x Y x Xlayer_conv_up3 = self.up_conv3(cat_block3)# B x 64 x Z x Y x Xfinal_layer = self.final_conv(layer_conv_up3)# B x 2 x Z x Y x Xreturn self.softmax(final_layer, dim=1)

2.2、模型初测

定义好了模型还不算完,分阶段测试下构建的网络是不是和我们所预想的一样。我们给他一个输入,测试下是否与我们最初的想法是一致的,是否报错等等问题,如下这样:

DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")  # 没gpu就用cpu
print(DEVICE)# Tensors for 3D Image Processing in PyTorch
# Batch x Channel x Z x Y x X
# Batch size BY x Number of channels x (BY Z dim) x (BY Y dim) x (BY X dim)if __name__ == '__main__':from torchsummary import summarymodel = UNet3D(num_out_classes=3, input_channels=3, init_feat_channels=32)# print(model)summary(model, input_size=(3, 128, 128, 64), batch_size=-1, device='cpu')

打印的内容如下:

----------------------------------------------------------------Layer (type)               Output Shape         Param #
================================================================Conv3d-1     [-1, 32, 128, 128, 64]           2,624BatchNorm3d-2     [-1, 32, 128, 128, 64]              64PReLU-3     [-1, 32, 128, 128, 64]              32Conv3d-4     [-1, 64, 128, 128, 64]          55,360BatchNorm3d-5     [-1, 64, 128, 128, 64]             128PReLU-6     [-1, 64, 128, 128, 64]              64MaxPool3d-7       [-1, 64, 64, 64, 32]               0Conv3d-8       [-1, 64, 64, 64, 32]         110,656BatchNorm3d-9       [-1, 64, 64, 64, 32]             128PReLU-10       [-1, 64, 64, 64, 32]              64Conv3d-11      [-1, 128, 64, 64, 32]         221,312BatchNorm3d-12      [-1, 128, 64, 64, 32]             256PReLU-13      [-1, 128, 64, 64, 32]             128MaxPool3d-14      [-1, 128, 32, 32, 16]               0Conv3d-15      [-1, 128, 32, 32, 16]         442,496BatchNorm3d-16      [-1, 128, 32, 32, 16]             256PReLU-17      [-1, 128, 32, 32, 16]             128Conv3d-18      [-1, 256, 32, 32, 16]         884,992BatchNorm3d-19      [-1, 256, 32, 32, 16]             512PReLU-20      [-1, 256, 32, 32, 16]             256MaxPool3d-21       [-1, 256, 16, 16, 8]               0Conv3d-22       [-1, 256, 16, 16, 8]       1,769,728BatchNorm3d-23       [-1, 256, 16, 16, 8]             512PReLU-24       [-1, 256, 16, 16, 8]             256Conv3d-25       [-1, 512, 16, 16, 8]       3,539,456BatchNorm3d-26       [-1, 512, 16, 16, 8]           1,024PReLU-27       [-1, 512, 16, 16, 8]             512ConvTranspose3d-28      [-1, 512, 32, 32, 16]       2,097,664Conv3d-29      [-1, 256, 32, 32, 16]       5,308,672BatchNorm3d-30      [-1, 256, 32, 32, 16]             512PReLU-31      [-1, 256, 32, 32, 16]             256Conv3d-32      [-1, 256, 32, 32, 16]       1,769,728BatchNorm3d-33      [-1, 256, 32, 32, 16]             512PReLU-34      [-1, 256, 32, 32, 16]             256ConvTranspose3d-35      [-1, 256, 64, 64, 32]         524,544Conv3d-36      [-1, 128, 64, 64, 32]       1,327,232BatchNorm3d-37      [-1, 128, 64, 64, 32]             256PReLU-38      [-1, 128, 64, 64, 32]             128Conv3d-39      [-1, 128, 64, 64, 32]         442,496BatchNorm3d-40      [-1, 128, 64, 64, 32]             256PReLU-41      [-1, 128, 64, 64, 32]             128ConvTranspose3d-42    [-1, 128, 128, 128, 64]         131,200Conv3d-43     [-1, 64, 128, 128, 64]         331,840BatchNorm3d-44     [-1, 64, 128, 128, 64]             128PReLU-45     [-1, 64, 128, 128, 64]              64Conv3d-46     [-1, 64, 128, 128, 64]         110,656BatchNorm3d-47     [-1, 64, 128, 128, 64]             128PReLU-48     [-1, 64, 128, 128, 64]              64Conv3d-49      [-1, 3, 128, 128, 64]             195
================================================================
Total params: 19,077,859
Trainable params: 19,077,859
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 12.00
Forward/backward pass size (MB): 8544.00
Params size (MB): 72.78
Estimated Total Size (MB): 8628.78
----------------------------------------------------------------

其中,我们测试的参数量是19,077,859,论文中说的参数量:The architecture has 19069955 parameters in total. 有略微的差别。

后面再调用模型,进行一次前向传播,loss运算和反向回归。如果这里都通过了,那么后面构建训练代码,就更简单了很多。如下:

if __name__ == '__main__':input_channels = 3num_out_classes = 2init_feat_channels = 32batch_size = 4model = UNet3D(num_out_classes=num_out_classes, input_channels=input_channels, init_feat_channels=init_feat_channels)# B x C x Z x Y x X# 4 x 1 x 64 x 64 x 64input_batch_size = (batch_size, input_channels, 128, 128, 64)input_example = torch.rand(input_batch_size)unet = model.to(DEVICE)input_example = input_example.to(DEVICE)output = unet(input_example)# output = output.cpu().detach().numpy()# Expected output shape# B x N x Z x Y x X# 4 x 2 x 64 x 64 x 64expected_output_shape = (batch_size, num_out_classes, 128, 128, 64)print("Output shape = {}".format(output.shape))assert output.shape == expected_output_shape, "Unexpected output shape, check the architecture!"expected_gt_shape = (batch_size, 128, 128, 64)ground_truth = torch.ones(expected_gt_shape)ground_truth = ground_truth.long().to(DEVICE)# Defining loss fnce_layer = torch.nn.CrossEntropyLoss()# Calculating lossce_loss = ce_layer(output, ground_truth)print("CE Loss = {}".format(ce_loss))# Back propagationce_loss.backward()

输出内容如下:

Output shape = torch.Size([4, 2, 128, 128, 64])
CE Loss = 0.6823387145996094

2.3、疑问汇总

GitHub上,一篇关于3D UNet的仓库,获得了1.6k 星星。链接地址在这里:pytorch-3dunet

在这个GitHub里面,增加了很多的注释,也带来了一些心中的疑惑。

2.3.1、什么时候使用softmax?什么时候使用sigmoid

选择使用softmaxsigmoid作为输出层的依据取决于您的任务类型和具体情况。

  • 如果您的任务是对每个像素进行多类别分类(语义分割),例如图像分割任务,那么您可以使用softmax作为输出层。softmax将为每个像素分配一个概率分布,表示该像素属于每个类别的概率,这样可以确保每个像素的预测结果归一化,并且所有通道的概率之和为1。这种方法通常用于分割器官或病变等结构。

  • 如果您的任务是对每个像素进行二元分类,例如肿瘤检测任务,那么您可以使用sigmoid作为输出层。sigmoid将为每个像素分配一个0到1之间的值,表示该像素属于正类的概率。这种方法通常用于检测二元结构,如肿瘤。但是,二元分类任务,使用softmax也是可以的。

总之,选择哪种输出层取决于您的任务类型和具体情况。

2.3.2、训练阶段是不需要softmax/sigmoid?只在推理阶段使用呢?

if True applies the final normalization layer (sigmoid or softmax), otherwise the networks returns the output from the final convolution layer; use False for regression problems, e.g. de-noising

  • 在训练阶段,输出层的特征图通常不需要经过sigmoidsoftmax函数处理,因为在计算损失函数时,通常会使用原始的特征图和标签图进行比较。

  • 在推理阶段,输出层的特征图需要经过sigmoidsoftmax函数处理,以将特征图转换为像素级别的预测结果。对于分割一个类别的任务,您可以使用sigmoid函数将特征图转换为像素级别的二进制掩码,表示每个像素属于结节的概率。对于分割多个类别的任务,您可以使用softmax函数将特征图转换为像素级别的类别标签。

因此,在推理阶段,您需要将输出层的特征图通过sigmoidsoftmax函数进行处理,以获得像素级别的预测结果。

在上面的GitHub有个训练的提示,如下这样:

  1. Training loss shape of target

    • When training with binary-based losses, i.e.: BCEWithLogitsLoss, DiceLoss, BCEDiceLoss, GeneralizedDiceLoss: The target data has to be 4D (one target binary mask per channel).
    • When training with WeightedCrossEntropyLoss, CrossEntropyLoss, PixelWiseCrossEntropyLoss the target dataset has to be 3D, see also pytorch documentation for CE loss: https://pytorch.org/docs/master/generated/torch.nn.CrossEntropyLoss.html
  2. final_sigmoid in the model config section applies only to the inference time (validation, test):

    • When training with BCEWithLogitsLoss, DiceLoss, BCEDiceLoss, GeneralizedDiceLoss set final_sigmoid=True;
    • When training with cross entropy based losses (WeightedCrossEntropyLoss, CrossEntropyLoss, PixelWiseCrossEntropyLoss) set final_sigmoid=False ,so that Softmax normalization is applied to the output.

2.3.3、在训练阶段,真的不可以加入sigmoid或softmax吗?

万事没有一个太绝对了。在训练阶段使用了sigmoidsoftmax也是可以的,以获得类似于推理阶段的预测结果。这种方法称为“软标签”,可以帮助模型更好地学习特征和提高分割结果的质量。(因为sigmoidsoftmax类似于一个规范化层,可以降低提高收敛效率)

使用软标签时,您需要将每个像素的标签从硬标签(0或1)转换为概率分布。对于分割一个类别的任务,您可以使用sigmoid函数将标签转换为0到1之间的值,表示该像素属于结节的概率。对于分割多个类别的任务,您可以使用softmax函数将标签转换为每个类别的概率分布。

请注意,使用软标签会增加模型的训练难度和计算复杂度。因此,

  1. 如果您的数据集足够大且质量良好,您可以不使用软标签来训练模型,也就是训练阶段不使用sigmoidsoftmax
  2. 但是如果您的数据集较小或存在噪声数据,使用软标签可能会提高模型的性能和分割结果的质量。也就是训练阶段使用sigmoidsoftmax

在论文:3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation,论文中第3.2章节介绍了如何使用软标签。

1

2.3.4、out_channels 的数量,要不要加背景层?

out_channels (int): number of output segmentation masks; Note that the of out_channels might correspond to either different semantic classes or to different binary segmentation mask.
It’s up to the user of the class to interpret the out_channels and use the proper loss criterion during training (i.e. CrossEntropyLoss (multi-class) or BCEWithLogitsLoss (two-class) respectively)

我的理解是,有多少个目标类,out_channels 就是多少,不需要加背景类。但是,我也看到就只有一个类别,但是做了加1操作的。这点我再了解下。如果你有什么心得,欢迎评论区交流。

三、总结

UNet网络的结构,无论是二维的,还是三维的,都是比较容易理解的,这可能也是为什么那么受欢迎的原因之一吧。如果你看过之前那篇关于2D UNet的过程,再看本篇应该就简单的很多。觉得本篇更简单一些呢。

我觉得本篇最大的价值,就是:

  1. 逐模块的分析了结构;
  2. 对后续的模型构建提供了思路;
  3. 构建完模型需要先预测试,两种方式可选;
  4. 对模型的优势和劣势,分析。

如果你阅读的过程中,发现了问题和疑问,欢迎评论区交流。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/129972.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python实现MC协议(SLMP 3E帧)的TCP服务端(篇二)

python实现MC协议(SLMP 3E帧)的TCP服务端是一件稍微麻烦点的事情。它不像modbusTCP那样,可以使用现成的pymodbus模块去实现。但是,我们可以根据协议帧进行组包,自己去实现帧的格式,而这一切可以基于socket模…

Zephyr-7B-β :类GPT的高速推理LLM

Zephyr 是一系列语言模型,经过训练可以充当有用的助手。 Zephyr-7B-β 是该系列中的第二个模型,是 Mistralai/Mistral-7B-v0.1 的微调版本,使用直接偏好优化 (DPO) 在公开可用的合成数据集上进行训练 。 我们发现,删除这些数据集的…

系列五、映射文件xxxMapper.xml

一、概述 mapper映射文件是mybatis中最重要的部分&#xff0c;涉及到的细节也非常多。 1.1、parameterType 表示输入参数的类型。例如&#xff1a; <select id"getUserById" parameterType"integer" resultType"org.star.entity.model.UserDO&…

python自动化测试模板

1:准备html模版 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 <!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title>接口自动化…

网络协议的基本概念

网络协议的基本概念 随处可见的协议 在计算机网络与信息通信领域里&#xff0c;人们经常提及“协议”一词。互联网中常用的具有代表性的协议有IP、TCP、HTTP等。 “计算机网络体系结构”将这些网络协议进行了系统归纳。TCP/IP就是IP、TCP、HTTP等协议的集合。现在&#xff0…

DI93a HESG440355R3 通过其Achilles级认证提供网络安全

DI93a HESG440355R3 通过其Achilles级认证提供网络安全 施耐德电气宣布推出Modicon M580以太网PAC (ePAC)自动化控制器&#xff0c;该控制器采用开放式以太网标准&#xff0c;通过其Achilles级认证提供网络安全。M580 ePAC使工厂操作员能够设计、实施和运行一个积极利用开放网…

(免费领源码)java#springboot#mysql网上商城系统的设计与实现08789-计算机毕业设计项目选题推荐

摘 要 随着互联网趋势的到来&#xff0c;各行各业都在考虑利用互联网将自己推广出去&#xff0c;最好方式就是建立自己的互联网系统&#xff0c;并对其进行维护和管理。在现实运用中&#xff0c;应用软件的工作规则和开发步骤&#xff0c;采用Java技术建设网上商城系统。 本设…

PCL点云处理(007)-Ransac

随机抽样一致性算法RANSAC(Random sample consensus)是一种迭代的方法来从一系列包含有离异值的数据中计算数学模型参数的方法。 RANSAC算法本质上由两步组成&#xff0c;不断进行循环&#xff1a; 从输入数据中随机选出能组成数学模型的最小数目的元素&#xff0c;使用这些元素…

【C++】红黑树模拟实现STL中的map与set

红黑树里面具体存的是什么类型的元素&#xff0c;是由模板参数 T 来决定&#xff1a; 如果 T 是 Key 那么就是 set。 如果 T 是 pair<const Key, V>&#xff0c;那么就是 map。 1、定义红黑树的节点结构 // 定义红黑颜色 enum Colour {RED,BLACK };template<class …

C/C++数据结构之时间复杂度和空间复杂度详细解析以及力扣刷题

个人主页&#xff1a;点我进入主页 专栏分类&#xff1a;C语言初阶 C语言程序设计————KTV C语言小游戏 C语言进阶 C语言刷题 数据结构初阶 欢迎大家点赞&#xff0c;评论&#xff0c;收藏。 一起努力&#xff0c;一起奔赴大厂。 目录 1.前言 2.算法的…

智能井盖传感器推荐,万宾科技助力城市信息化建设

随着科技产品更新换代进程加快&#xff0c;人工智能在人们日常生活之中逐渐普及开来&#xff0c;深入人们生活的方方面面&#xff0c;影响城市基础设施建设工程。例如在大街小巷之中的井盖作为城市基础建设的一个重要部分&#xff0c;一旦出现松动倾斜或凸起等异常问题&#xf…

掌握Maven和SpringBoot的灵活性:定制化lib目录和依赖范围

前言 在开发基于Maven和SpringBoot的项目时&#xff0c;我们经常会使用第三方库来满足需求。然而&#xff0c;有时候我们需要更灵活地控制这些库的依赖范围和加载方式。本文将介绍如何使用Maven和SpringBoot实现定制化的lib目录和依赖范围。经过如下定制化后&#xff0c;打包执…

MySQL - Zero date value prohibited

问题: timestamp字段报Caused by: com.mysql.cj.exceptions.DataReadException: Zero date value prohibited 原因: timestamp字段存入了0值, 超出了最小值1900-01-01 00:00:00, 转Java对象的时候报错 解决: 1.修复或删除原数据 2. mysqlurl 中添加zeroDateTimeBehaviorconve…

ROS笔记之TF坐标变换

ROS笔记之TF坐标变换 文章目录 ROS笔记之TF坐标变换一些相关函数的用法tf::TransFormBroadcaster tf1; tf1.sendTransform()tf::StampedTransform()tf::Transform()tf::Vector3()详解br.sendTransform(tf::StampedTransform(tf::Transform(tf::Quaternion::getIdentity(),tf::V…

RT-DETR 项目【训练】【验证】【推理】脚本

文章目录 训练 --train.py推理 --detect.py验证 --val.py不训练,只查看模型结构/参数量 --test.py有同学问 RT-DETR 怎么训练,其实和 YOLOv8 几乎一样,但是有很多同学没接触过 v8 我这里直接给大家写好几个脚本,大家直接在我的脚本上调节参数就可以训练了, 脚本包含【训…

java数据机构.冒泡排序,选择排序 插入排序 递归算法,递归求阶乘,快速排序

排序算法 冒泡排序选择排序插入排序递归算法递归求1~100的和递归求阶乘 快速排序总结 冒泡排序 相邻两个元素比较,大的放右边,小的放左边 第一轮循环结束最大值已经找到,在数组最右边(归为算法) 第二轮在剩余的元素比较找到次大值,第二轮可以少循环一次 如果有n个数据,总共我们…

《python深度学习》笔记(二十):神经网络的解释方法之CAM、Grad-CAM、Grad-CAM++、LayerCAM

原理优点缺点GAP将多维特征映射降维为一个固定长度的特征向量①减少了模型的参数量&#xff1b;②保留更多的空间位置信息&#xff1b;③可并行计算&#xff0c;计算效率高&#xff1b;④具有一定程度的不变性①可能导致信息的损失&#xff1b;②忽略不同尺度的空间信息CAM利用…

Servlet对象生命周期

Servlet 生命周期包括加载与实例化、初始化、服务请求、销毁等阶段。 ervlet 的生命周期包括以下阶段&#xff1a; 加载与实例化&#xff1a;当容器启动或者第一次请求到达时&#xff0c;Servlet 容器加载 Servlet 类并创建 Servlet 实例。 初始化&#xff1a;在 Servlet 实例…

网络安全演练(一句话木马)

在享受互联网带来的便利的同时&#xff0c;也充满了各种网络安全风险&#xff0c;本文通过搭建实验环境&#xff0c;演示一句话木马获取主机权限。 演示环境 服务端&#xff1a;安装LAMP环境&#xff0c;部署web网站&#xff0c;上传一句话木马文件 客户端&#xff1a;安装A…

qt6-QPushButton无法显示为类

问题 在编写QT程序时&#xff0c;不同颜色表示不同的含义。在设计基本的界面&#xff0c;需要使用QRadioButton时&#xff0c;相应的字符为紫色&#xff0c;紫色为类名。这篇简单说明了下&#xff0c;也可以鼠标点击页面&#xff0c;可以出现提示。 但是上面图片中显示&#…