从头开始:数据结构和算法入门(时间复杂度、空间复杂度)

目录

文章目录

前言

1.算法效率

1.1 如何衡量一个算法的好坏

1.2 算法的复杂度

2.时间复杂度 

2.1 时间复杂度的概念

2.2 大O的渐进表示法

2.3常见时间复杂度计算

3.空间复杂度

4.常见复杂度对比

总结


前言

        C语言的学习篇已经结束,今天开启新的篇章——数据结构和算法。本期主要内容是对数据结构和算法入门知识——复杂度进行讲解。


1.算法效率

1.1 如何衡量一个算法的好坏

如何衡量一个算法的好坏呢?比如对于以下斐波那契数列:

long long Fib(int N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

 这个斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量算法好与坏呢?

 答案是,一个程序中算法的复杂度,才是衡量一个程序好坏的标准。

 1.2 算法的复杂度

        算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

        时间复杂度主要衡量一个算法的运行快慢而空间复杂度主要衡量一个算法运行所需要的额外空间

        在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

算法的复杂度在校招中也是极为重要的考察点。

2.时间复杂度 

2.1 时间复杂度的概念

时间复杂度的定义:

        在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。

        一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比,算法中的基本操作的执行次数,为算法的时间复杂度。

         找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。来看一下下面这段代码:

void Func1(int N)
{int count = 0;for (int i = 0; i < N ; ++ i){for (int j = 0; j < N ; ++ j){++count;}}for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

 计算一下Func1的基本执行次数:

  • N = 10 ,F(N) = 130
  • N = 100 ,F(N) = 10210
  • N = 1000, F(N) = 1002010

        它们的关系式: F(N)=N*N+2*N+10,我们发现随着N的增大,2*N和10对执行次数的影响在逐渐减小。

        实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

 2.2 大O的渐进表示法

大O符号:是用于描述函数渐进行为的数学符号。

 推导大O阶的基本方法:

  • 用常数1取代运行时间中的所有加法常数(任何常数,有确切数字且不超int最大范围都算)。
  • 在修改后的运行次数函数中,只保留最高阶项。
  • 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶(如果有常数项除去常数项)

         使用大O的渐进表示法以后,Func1的时间复杂度为N平方。

  • N = 10, F(N) = 100
  • N = 100 ,F(N) = 10000
  • N = 1000 ,F(N) = 1000000

        通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。 

 另外有些算法的时间复杂度存在最好、平均和最坏情况:

  • 最坏情况:任意输入规模的最大运行次数(上界)
  • 平均情况:任意输入规模的期望运行次数
  • 最好情况:任意输入规模的最小运行次数(下界)

例如在一个有N个数据的数组当中,查找一个数字X:

  •   最好情况:1次找到
  •   最坏情况:N次找到
  •   平均情况:N/2次找到

         在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

 2.3常见时间复杂度计算

例1:

void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

 这个代码的时间复杂度是多少呢?

 Func2基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)

 例2:

void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++ k){++count;}for (int k = 0; k < N ; ++ k){++count;}printf("%d\n", count);
}

 这个程序的时间复杂度是多少呢?

Func3基本操作执行了M+N次,由于M和N都是未知,所以时间复杂度为 O(N+M)

 例3:

void Func4(int N)
{int count = 0;for (int k = 0; k < 100; ++ k){++count;}printf("%d\n", count);
}

 计算该程序的时间复杂度

 Func4基本操作执行了100次,通过推导大O阶方法,时间复杂度为 O(1)

 例4:

void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

 我们来看一下这个冒泡排序的时间复杂度是多少?

        冒泡排序是相邻两元素进行比较,再进行交换排序。并且交换的比较的次数依次减少。冒泡详细过程可参考下边博客,其中有对冒泡排序详细过程介绍。——冒泡排序详细过程

 时间复杂度是算法中的基本操作的执行次数。

         排序一个数最多需要比较并交换执行n-1次,第二个数需要进行n-2次,……直到排序结束,总的执行次数也就是等差数列的和。根据等差数列求和公式我们可以得出:最坏执行了(N*(N+1)/2次。通过推导大O阶方法+时间复杂度一般看最坏,所以冒泡排序的时间复杂度为 O(N^2)。

 例5:

int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n-1;while (begin <= end){int mid = begin + ((end-begin)>>1);if (a[mid] < x)begin = mid+1;else if (a[mid] > x)end = mid-1;elsereturn mid;
}

 我们来看一看二分查找的时间复杂度。

二分查找详细介绍可参考文章:这就是二分查找?

 二分查找每次将查找区间进行折半。

N

N/2

N/2/2

N/2/2/2

……

N/2/2……/2=1;

最坏情况:查找区间缩放只剩一个数时。

最坏情况下查找了多少次?除了多少次2,就查找了多少次。

 我们假设查找了x次,2^x=N,x等于log2(N),时间复杂度是算法中的基本操作的执行次数。

         操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ,ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。(建议通过折纸查找的方式讲解logN是怎么计算出来的) 。      

例6:

long long Fac(size_t N)
{if(0 == N)return 1;return Fac(N-1)*N;
}

 接下来我们来看看递归的时间复杂度是多少?

        这个递归的时间复杂度是O(N),为什么?我们知道递归是调用自身函数,通过观察我们发现,递归函数中只执行一次,但是递归调用函数调用了N+1次,时间复杂度是算法中的基本操作的执行次数。调用了N+1次,就执行了N+1次,所以时间复杂度是O(N)。通过递归我们会找到这样的规律:递归算法的时间复杂度是多少次调用的次数累加。我们知道了这个规律,那我们再来看看这个递归 。

 例7:

long long Fac(size_t N)
{if(0 == N)return 1;for(size_t i=0;i<N;i++){……}return Fac(N-1)*N;
}

 这个递归的时间复杂度是多少?

        答案是O(N^2),这里递归调用了N次,但每次调用都执行N次的循环,注意这里的N是逐渐变小的(每次调用传递的是N-1),所以这个递归的执行次数也就是等差数列的和,我们需要记住,执行次数为等差数列的和,时间复杂度就是O(N^2)。我们继续来看看这个递归。

例8:

long long Fib(size_t N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

它的时间复杂度是多少?

        它的时间复杂度是O(2^N)。递归算法的时间复杂度是多少次调用的次数累加。这个递归是双路递归,它的递归路线是成树状结构的:

         执行次数符合2^N增长,但是执行到最后也并不能完全算的上是2^N,最后在右下角部分会率先递归到Fib(0),所以右下角会缺失一部分。但时间复杂度本身就是一个估算的结果,所以它的时间复杂度仍为O(2^N)

3.空间复杂度

定义:

 空间复杂度是算法在运行过程中临时占用存储空间大小的量度

        空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法。注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

 例1:

void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

我们再来看看上述的冒泡排序,它的空间复杂度是多少?

        答案是O(1),为什么?空间复杂度是算法在运行过程中临时占用存储空间大小的量度,主要通过函数在运行时候显式申请的额外空间来确定。冒泡排序在解决排序问题的过程中并没有向内存申请额外的空间。所以空间复杂度为 O(1)。

例2:

long long* Fibonacci(size_t n)
{if(n==0)return NULL;long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n ; ++i){fibArray[i] = fibArray[i - 1] + fibArray [i - 2];}return fibArray;
}

这个程序的空间复杂度是多少?

        答案是O(N)。这个程序使用数组来实现斐波那契数列,在程序中额外申请了n+1个存储数据的空间,动态开辟了N个空间,空间复杂度为 O(N)。

 例3:

long long Fac(size_t N)
{if(N == 0)return 1;return Fac(N-1)*N;
}

这个递归的空间复杂度是多少?

        答案是O(N),递归在调用自身的同时会保留当前的栈帧,然后继续开辟新的函数栈帧,这里递归合计开辟了N个栈帧。每个栈帧开辟常数个空间,所以空间复杂度是O(N),可能还会有人问,函数栈帧不是不算吗?这里注意,空间复杂度的定义是算法在运行过程中临时占用存储空间大小的量度,主要通过函数在运行时候显式申请的额外空间来确定。只有第一个递归函数不算,其他开辟的函数栈帧都属于额外开辟的空间。

        我们可以总结一下递归与普通函数的区别:普通函数只需计算当前函数中的时间和空间消耗,递归函数需要计算调用的所有函数消耗的时间和空间。

 例4:

long long Fib(size_t N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

 为了大家能够更深刻的理解,这里我们再来看看上述的这个双路递归,它的空间复杂度是多少?

        答案是O(N),为什么呢?注意这里计算的是空间复杂度,空间和时间的区别在哪?空间可以复用,而时间不可以。当一个递归率先到达Fib(0)时,就会返回上一层递归,而返回的同时也会将空间还给操作系统,这个双路递归最多会在栈区向下创建N+1个函数栈帧。所以它的空间复杂度是O(N)。总结一下:我们常见的程序,空间复杂度一般都是O(N)或者O(1),如果空间复杂度过高会造成程序消耗内存过高,程序会崩溃。

4.常见复杂度对比

一般常见的复杂度如下:

 增长曲线如下:

 

 


总结

        日常生活中我们会遇到很多问题需要算法解决,在选择算法时,我们需要综合考虑时间复杂度和空间复杂度,找到一个合适的平衡点,以满足问题的要求和资源的限制。通过分析算法复杂度,我们可以评估算法的效率和可行性,并选择最优的算法来解决问题。好的本期内容到此结束。最后,感谢阅读!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/12936.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

gitee 配置ssh 公钥(私钥)

步骤1&#xff1a;添加/生成SSH公钥&#xff0c;码云提供了基于SSH协议的Git服务&#xff0c;在使用SSH协议访问项目仓库之前&#xff0c;需要先配置好账户/项目的SSH公钥。 绑定账户邮箱&#xff1a; git config --global user.name "Your Name" git config --glob…

【图像去噪】基于进化算法——自组织迁移算法(SOMA)的图像去噪研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

HTML基础知识点总结

目录 1.HTML简介 2.HTML基础结构 主要字符&#xff1a; 3.基础知识 &#xff08;一&#xff09;p标签 &#xff08;二&#xff09;hr标签 &#xff08;三&#xff09;尖角号 &#xff08;四&#xff09;版权号 (五)div和span div span (六)列表 &#xff08;1&…

【Docker】Docker相关基础命令

目录 一、Docker服务相关命令 1、启动docker服务 2、停止docker服务 3、重启docker服务 4、查看docker服务状态 5、开机自启动docker服务 二、Images镜像相关命令 1、查看镜像 2、拉取镜像 3、搜索镜像 4、删除镜像 三、Container容器相关命令 1、创建容器 2、查…

pytorch实现梯度下降算法例子

如题&#xff0c;利用pytorch&#xff0c;通过代码实现机器学习中的梯度下降算法&#xff0c;求解如下方程&#xff1a; f ′ ( x , y ) x 2 20 y 2 {f}(x,y) x^2 20 y^2 f′(x,y)x220y2 的最小值。 Latex语法参考&#xff1a;https://blog.csdn.net/ViatorSun/article/d…

RabbitMQ 集群部署

RabbiMQ 是用 Erlang 开发的,集群非常方便,因为 Erlang 天生就是一门分布式语言,但其本身并不支持负载均衡。 RabbitMQ 的集群节点包括内存节点、磁盘节点。RabbitMQ 支持消息的持久化,也就是数据写在磁盘上,最合适的方案就是既有内存节点,又有磁盘节点。 RabbitMQ 模式大…

【动态规划part12】| 309.买卖股票的最佳时机含冷冻期、714.买卖股票的最佳时机含手续费

目录 &#x1f388;LeetCode309.最佳买卖股票时机含冷冻期 &#x1f388;LeetCode714.买卖股票的最佳时机含手续费 &#x1f388;LeetCode309.最佳买卖股票时机含冷冻期 给定一个整数数组prices&#xff0c;其中第 prices[i] 表示第 i 天的股票价格 。​ 设计一个算法计…

Jenkins从配置到实战(二) - Jenkins的Master-Slave分布式构建

前言 Jenkins的Master-Slave分布式构建&#xff0c;就是通过将构建过程分配到从属Slave节点上&#xff0c;从而减轻Master节点的压力&#xff0c;而且可以同时构建多个&#xff0c;有点类似负载均衡的概念。简单理解就是&#xff0c;将Jenkins服务器上的构建任务分配到其他机器…

【Spring Boot】实战:实现优雅的数据返回

实战&#xff1a;实现优雅的数据返回 本节介绍如何让前后台优雅地进行数据交互&#xff0c;正常的数据如何统一数据格式&#xff0c;以及异常情况如何统一处理并返回统一格式的数据。 1.为什么要统一返回值 在项目开发过程中经常会涉及服务端、客户端接口数据传输或前后台分…

多分类问题-Softmax Classifier分类器

概率分布&#xff1a;属于每一个类别的概率总和为0&#xff0c;且都>0&#xff0c;n组类别需要n-1个参数就能算出结果 数据预处理 loss函数 crossentropyloss()函数 CrossEntropyLoss <> LogSoftmax NLLLoss。也就是说使用CrossEntropyLoss最后一层(线性层)是不需要做…

Fiddler Everywhere(TTP调试抓包工具) for Mac苹果电脑版

Fiddler Everywhere for Mac版是Mac电脑上的一款跨平台的HTTP调试抓包工具&#xff0c;Fiddler Everywhere for Mac能够记录客户端与服务器之间的所有HTTP&#xff08;S&#xff09;通信&#xff0c;支持对包进行监视、分析、设置断点、甚至修改请求/响应数据等操作。 适用于任…

基于量子同态加密的安全多方凸包协议

摘要安全多方计算几何(SMCG)是安全多方计算的一个分支。该协议是为SMCG中安全的多方凸包计算而设计的。首先&#xff0c;提出了一种基于量子同态加密的安全双方值比较协议。由于量子同态加密的性质&#xff0c;该协议可以很好地保护量子电路执行过程中数据的安全性和各方之间的…

【广州华锐互动】AR智慧机房设备巡检系统

AR智慧机房设备巡检系统是一种新型的机房巡检方式&#xff0c;它通过使用增强现实技术将机房设备、环境等信息实时呈现在用户面前&#xff0c;让巡检人员可以更加高效地完成巡检任务。 首先&#xff0c;AR智慧机房设备巡检系统具有极高的智能化程度。该系统可以根据用户设定的…

WIZnet W5500-EVB-Pico树莓派入门教程(一)

概述 W5500-EVB-Pico是基于树莓派RP2040和完全硬连线TCP/IP控制器W5500的微控制器开发板-基本上与树莓派Pico板相同&#xff0c;但通过W5500芯片增加了以太网功能。 板载资源 RP2040是Raspberry Pi的首款微控制器。它将我们的高性能、低成本和易用性的标志性价值观带入微控制器…

抖音短视频seo源码矩阵系统开发

一、前言&#xff1a; 抖音SEO源码矩阵系统开发是一项专为抖音平台设计的SEO优化系统&#xff0c;能够帮助用户提升抖音视频的搜索排名和曝光度。为了确保系统运行正常&#xff0c;需要安装FFmpeg和FFprobe工具。FFmpeg是一个用于处理多媒体数据的开源工具集&#xff0c;而FFpr…

Redis三种模式——主从复制,哨兵模式,集群

目录 一、主从复制 1.1主从复制的概念 1.2Redis主从复制作用 1.2.1数据冗余 1.2.2故障恢复 1.2.3负载均衡 1.2.4高可用基石 1.3Redis主从复制流程 1.4部署Redis 主从复制 1.4.1.环境部署 1.4.2.所有服务器都先关闭防火墙 1.4.3.所有服务器都安装Redis 1.4.4修改Master主节点R…

在CSDN学Golang云原生(Kubernetes声明式资源管理Kustomize)

一&#xff0c;生成资源 在 Kubernetes 中&#xff0c;我们可以通过 YAML 或 JSON 文件来定义和创建各种资源对象&#xff0c;例如 Pod、Service、Deployment 等。下面是一个简单的 YAML 文件示例&#xff0c;用于创建一个 Nginx Pod&#xff1a; apiVersion: v1 kind: Pod m…

Linux下CMake开发

CMake编译和运行C文件 编写CMakeLists.txt # 声明要求的 cmake 最低版本 cmake_minimum_required( VERSION 3.1 )# 声明一个 cmake 工程 project( pro )# 设置编译模式 set( CMAKE_BUILD_TYPE "Release" )#添加OPENCV库 #指定OpenCV版本&#xff0c;代码如下 #find…

jmeter-断言

断言作用&#xff1a;让脚本自动化执行过程中&#xff0c;能够自动判定执行结果是否正确&#xff0c;需要添加断言 响应断言 添加方式&#xff1a;测试计划–》线程组–》HTTP请求–》(右键添加)断言–》响应断言 案例 请求:https://www.baidu.com 检查&#xff1a;让程序检查…

TortoiseGit安装

1、TortoiseGit简介 TortoiseGit是基于TortoiseSVN的Git版本的Windows Shell界面。它是开源的&#xff0c;可以完全免费使用。 TortoiseGit 支持你执行常规任务&#xff0c;例如commit、显示日志、区分两个版本、创建分支和标签、创建补丁等。 2、TortoiseGit下载 (1)Tortois…