自己动手实现一个深度学习算法——二、神经网络的实现

文章目录

      • 1. 神经网络概述
        • 1)表示
        • 2)激活函数
        • 3)sigmoid函数
        • 4)阶跃函数的实现
        • 5)sigmoid函数的实现
        • 6)sigmoid函数和阶跃函数的比较
        • 7)非线性函数
        • 8)ReLU函数
      • 2.三层神经网络的实现
        • 1)结构
        • 2)代码实现
      • 3.输出层的设计
        • 1)概述
        • 2)softmax函数
        • 3)实现softmax函数时的注意事项
        • 4)softmax函数的特征
        • 5)输出层的神经元数量
      • 4.手写数字识别
        • 1)MNIST数据集
        • 2)实现
        • 3)批处理

神经网络可以自动地从数据中学习到合适的权重参数。

1. 神经网络概述

1)表示

神经网络信号传递类似于感知机。最左边的一列称为输入层,最右边的一列称为输出层,中间的一列称为中间层。中间层有时也称为隐藏层。实现中,输入层到输出层依次称为第 0层、第1 层、第 2 层

在这里插入图片描述

2)激活函数

h(x)函数会将输入信号的总和转换为输出信号,这种函数一般称为激活函数(activation function)。如下:

y = h(b + w1x1+ w2x2)

如果激活函数如下,即以阈值为界,一旦输入超过阈值,就切换输出。这样的函数称为“阶跃函数”。因此,可以说感知机中使用了阶跃函数作为
激活函数。

在这里插入图片描述

3)sigmoid函数

神经网络中经常使用的一个激活函数就是sigmoid函数(sigmoid function)。表达式如下:

在这里插入图片描述

神经网络中用sigmoid函数作为激活函数,进行信号的转换,转换后的信号被传送给下一个神经元。

感知机和神经网络的主要区别就在于这个激活函数

4)阶跃函数的实现
# coding: utf-8
import numpy as np
import matplotlib.pylab as pltdef step_function(x):# return np.array(x > 0, dtype=np.int)return np.array(x > 0, dtype=int)X = np.arange(-5.0, 5.0, 0.1)
Y = step_function(X)
plt.plot(X, Y)
plt.ylim(-0.1, 1.1)  # 指定图中绘制的y轴的范围
plt.show()
5)sigmoid函数的实现
# coding: utf-8
import numpy as np
import matplotlib.pylab as pltdef sigmoid(x):return 1 / (1 + np.exp(-x))    X = np.arange(-5.0, 5.0, 0.1)
Y = sigmoid(X)
plt.plot(X, Y)
plt.ylim(-0.1, 1.1)
plt.show()
6)sigmoid函数和阶跃函数的比较

sigmoid函数是一条平滑的曲线,输出随着输入发生连续性的变化。sigmoid函数的平滑性对神经网络的学习具有重要意义。

当输入信号为重要信息时,阶跃函数和sigmoid函数都会输出较大的值;当输入信号为不重要的信息时,两者都输出较小的值。

不管输入信号有多小,或者有多大,输出信号的值都在0到1之间。

# coding: utf-8
import numpy as np
import matplotlib.pylab as pltdef sigmoid(x):return 1 / (1 + np.exp(-x))    def step_function(x):return np.array(x > 0, dtype=np.int)x = np.arange(-5.0, 5.0, 0.1)
y1 = sigmoid(x)
y2 = step_function(x)plt.plot(x, y1)
plt.plot(x, y2, 'k--')
plt.ylim(-0.1, 1.1) #指定图中绘制的y轴的范围
plt.show()
7)非线性函数

阶跃函数和sigmoid函数还有其他共同点,就是两者均为非线性函数。

神经网络的激活函数必须使用非线性函数。线性函数的问题在于,不管如何加深层数,总是存在与之等效的“无隐藏层的神经网络”

为了发挥叠加层所带来的优势,激活函数必须使用非线性函数。

8)ReLU函数

sigmoid函数很早就开始被使用了,而最近则主要使用ReLU(Rectified Linear Unit)函数。

ReLU 函数也是一种激活函数,可以表示为下面的式

在这里插入图片描述

ReLU函数的实现如下,

# coding: utf-8
import numpy as np
import matplotlib.pylab as pltdef relu(x):return np.maximum(0, x)x = np.arange(-5.0, 5.0, 0.1)
y = relu(x)
plt.plot(x, y)
plt.ylim(-1.0, 5.5)
plt.show()

2.三层神经网络的实现

1)结构

3层神经网络:输入层(第0层)有2个神经元,第1个隐藏层(第1层)有3个神经元,第2个隐藏层(第2层)有2个神经元,输出层(第3层)有2个神经元,结构

如下,

在这里插入图片描述

2)代码实现
# coding: utf-8
import numpy as np
from common.functions import sigmoid,identity_functiondef init_network():network = {}network['W1'] = np.array([[0.1, 0.3, 0.5], [0.2, 0.4, 0.6]])network['b1'] = np.array([0.1, 0.2, 0.3])network['W2'] = np.array([[0.1, 0.4], [0.2, 0.5], [0.3, 0.6]])network['b2'] = np.array([0.1, 0.2])network['W3'] = np.array([[0.1, 0.3], [0.2, 0.4]])network['b3'] = np.array([0.1, 0.2])return network
def forward(network, x):W1, W2, W3 = network['W1'], network['W2'], network['W3']b1, b2, b3 = network['b1'], network['b2'], network['b3']a1 = np.dot(x, W1) + b1z1 = sigmoid(a1)a2 = np.dot(z1, W2) + b2z2 = sigmoid(a2)a3 = np.dot(z2, W3) + b3y = identity_function(a3)return y
network = init_network()
x = np.array([1.0, 0.5])
y = forward(network, x)
print(y) # [ 0.31682708  0.69627909]

3.输出层的设计

1)概述

机器学习的问题大致可以分为分类问题和回归问题。分类问题是数据属于哪一个类别的问题。比如,区分图像中的人是男性还是女性的问题就是分类问题。而回归问题是根据某个输入预测一个(连续的)数值的问题。比如,根据一个人的图像预测这个人的体重的问题就是回归问题(类似“57.4kg”这样的预测)。

输出层的激活函数用σ()表示,不同于隐藏层的激活函数h()(σ读作sigma)。

输出层所用的激活函数,要根据求解问题的性质决定。一般地,回归问题可以使用恒等函数,二元分类问题可以使用sigmoid函数,多元分类问题可以使用softmax函数。

恒等函数会将输入按原样输出,对于输入的信息,不加以任何改动地直接输出。

2)softmax函数

分类问题中使用的softmax函数可以用下面的式表示。
在这里插入图片描述

softmax 函数的分子是输入信号 ak的指数函数,分母是所有输入信号的指数函数的和。输出层的各个神经元都受到所有输入信号的影响。

3)实现softmax函数时的注意事项

softmax函数的实现中要进行指数函数的运算,但是此时指数函数的值很容易变得非常大。结果可能会返回一个表示无穷大的inf。如果在这些超大值之间进行除法运算,结果会出现“不确定”的情况。这个问题称为溢出。

解决方式如下:

def softmax(a):#通过减去输入信号中的最大值c = np.max(a)exp_a = np.exp(a - c) # 溢出对策sum_exp_a = np.sum(exp_a)y = exp_a / sum_exp_areturn y
4)softmax函数的特征

softmax函数的输出是0.0到1.0之间的实数。并且,softmax函数的输出值的总和是1

一般而言,神经网络只把输出值最大的神经元所对应的类别作为识别结果。并且,即便使用softmax函数,输出值最大的神经元的位置也不会变。

**因此,神经网络在进行分类时,输出层的softmax函数可以省略。**在实际的问题中,由于指数函数的运算需要一定的计算机运算量,因此输出层的softmax函数
一般会被省略。

在输出层使用softmax函数是因为它和神经网络的学习有关系

5)输出层的神经元数量

输出层的神经元数量需要根据待解决的问题来决定。对于分类问题,输出层的神经元数量一般设定为类别的数量。

4.手写数字识别

假设学习已经全部结束,我们使用学习到的参数,先实现神经网络的“推理处理”。这个推理处理也称为神经网络的前向传播(forward propagation)。

1)MNIST数据集

MNIST是机器学习领域最有名的数据集之一,被应用于从简单的实验到发表的论文研究等各种场合。

MNIST 数据集是由 0 到 9 的数字图像构成的(图 3-24)。训练图像有 6 万张,测试图像有1万张,这些图像可以用于学习和推理。MNIST数据集的一般使用方法是,先用训练图像进行学习,再用学习到的模型度量能在多大程度上对测试图像进行正确的分类。

显示图形代码

# coding: utf-8
import sys, os
sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import numpy as np
from dataset.mnist import load_mnist
from PIL import Imagedef img_show(img):pil_img = Image.fromarray(np.uint8(img))pil_img.show()(x_train, t_train), (x_test, t_test) = load_mnist(flatten=True, normalize=False)
print(x_train.shape)
print(t_train.shape)
img = x_train[0]
label = t_train[0]
print(label)  # 5
print(img.shape)
print(img.shape)  # (784,)
img = img.reshape(28, 28)  # 把图像的形状变为原来的尺寸
print(img.shape)  # (28, 28)img_show(img)

load_mnist 函数以“(训练图像,训练标签),(测试图像,测试标签)”的形式返回读入的MNIST数据。此外,还可以像load_mnist(normalize=True, flatten=True, one_hot_label=False) 这 样,设 置 3 个 参 数。第 1 个 参 数normalize 设置是否将输入图像正规化为 0.0~1.0 的值。如果将该参数设置为False,则输入图像的像素会保持原来的0~255。第2个参数flatten设置是否展开输入图像(变成一维数组)。如果将该参数设置为False,则输入图像为1×28×28 的三维数组;若设置为 True,则输入图像会保存为由 784 个元素构成的一维数组。第3个参数one_hot_label设置是否将标签保存为one-hot 表示(one-hot representation)onehot 表示是仅正确解标签为 1,其余皆为0的数组,就像[0,0,1,0,0,0,0,0,0,0]这样。当one_hot_label为False时,只是像7、2这样简单保存正确解标签;one_hot_label为True时,标签则保存为one-hot表示。

2)实现

神经网络的输入层有784个神经元,输出层有10个神经元。输入层的784这个数字来源于图像大小的28×28 = 784,输出层的 10 这个数字来源于 10 类别分类(数
字0到9,共10类别)。此外,这个神经网络有2个隐藏层,第1个隐藏层有50 个神经元,第 2 个隐藏层有 100 个神经元。

# coding: utf-8
import sys, os
sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import numpy as np
import pickle
from dataset.mnist import load_mnist
from common.functions import sigmoid, softmax#读入写字数据集,进行了归一化处理的一维数组,保存了正确解的标签
def get_data():(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, flatten=True, one_hot_label=False)return x_test, t_test#读入保存在 pickle 文件 sample_weight.pkl 中的学习到的权重参数.这个文件中以字典变量的形式保存了权重和偏置参数。
def init_network():with open("sample_weight.pkl", 'rb') as f:network = pickle.load(f)return networkdef predict(network, x):W1, W2, W3 = network['W1'], network['W2'], network['W3']b1, b2, b3 = network['b1'], network['b2'], network['b3']a1 = np.dot(x, W1) + b1z1 = sigmoid(a1)a2 = np.dot(z1, W2) + b2z2 = sigmoid(a2)a3 = np.dot(z2, W3) + b3y = softmax(a3)return yx, t = get_data()
network = init_network()
accuracy_cnt = 0
for i in range(len(x)):y = predict(network, x[i])p= np.argmax(y) # 获取概率最高的元素的索引if p == t[i]:accuracy_cnt += 1print("Accuracy:" + str(float(accuracy_cnt) / len(x)))

将 normalize 设置成 True 后,函数内部会进行转换,将图像的各个像素值除以255,使得数据的值在0.0~1.0的范围内。像这样把数据限定到某个范围内的处理称为正规化(normalization)。此外,对神经网络的输入数据进行某种既定的转换称为预处理(pre-processing)

3)批处理
# coding: utf-8
import sys, os
sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import numpy as np
import pickle
from dataset.mnist import load_mnist
from common.functions import sigmoid, softmaxdef get_data():(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, flatten=True, one_hot_label=False)return x_test, t_testdef init_network():with open("sample_weight.pkl", 'rb') as f:network = pickle.load(f)return networkdef predict(network, x):w1, w2, w3 = network['W1'], network['W2'], network['W3']b1, b2, b3 = network['b1'], network['b2'], network['b3']a1 = np.dot(x, w1) + b1z1 = sigmoid(a1)a2 = np.dot(z1, w2) + b2z2 = sigmoid(a2)a3 = np.dot(z2, w3) + b3y = softmax(a3)return yx, t = get_data()
network = init_network()batch_size = 100 # 批数量
accuracy_cnt = 0#按照batch_size间隔,从0获取元素
for i in range(0, len(x), batch_size):x_batch = x[i:i+batch_size]y_batch = predict(network, x_batch)#按照1维取最大值,即按行取最大值p = np.argmax(y_batch, axis=1)accuracy_cnt += np.sum(p == t[i:i+batch_size])print("Accuracy:" + str(float(accuracy_cnt) / len(x)))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/128040.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设置防火墙

1.RHEL7中的防火墙类型 防火墙只能同时使用一张,firewall底层调用的还是lptables的服务: firewalld:默认 ,基于不同的区域做规则 iptables: RHEL6使用,基于链表 Ip6tables Ebtables 2.防火墙的配置方式 查看防火墙状态: rootlinuxidc -]#systemct…

建议没用过这个的社区人都来试试!

不是吧,还有社区工作者不知道这个好东西嘛? 就是这个——写作火火,是写报告、方案一把好手啊 直接输入想写的内容,几秒钟报名啊方案啊就来了,不满意可以重新写,直到你满意为止,真的很方便。 …

[一] C++入门

摘要:OOP(面向对象),namespace,cout and cin,缺省参数,函数重载,引用,内联函数,auto,范围 for,nullptr 20世纪80年代,计算机界提出了OOP(object o…

Hadoop RPC简介

数新网络-让每个人享受数据的价值https://www.datacyber.com/ 前 言 RPC(Remote Procedure Call)远程过程调用协议,一种通过网络从远程计算机上请求服务,而不需要了解底层网络技术的协议。RPC它假定某些协议的存在,例…

【计算机网络】计算机网络中的基本概念

文章目录 局域网LAN基于网线直连基于集线器组建基于交换机组建基于交换机和路由器组建 广域网WANIP地址端口号协议为什么要有协议知名协议的默认端口 五元组协议分层TCP/IP五层模型封装和分用 网络互连就是将多台计算机连接在一起,完成数据共享。数据共享本质是网络…

查询平均提速 700%,奇安信基于 Apache Doris 升级日志安全分析系统

本文导读: 数智时代的到来使网络安全成为了不可忽视的重要领域。奇安信作为一家领先的网络安全解决方案领军者,致力于为企业提供先进全面的网络安全保护,其日志分析系统在网络安全中发挥着关键作用,通过对运行日志数据的深入分析…

正则表达式续篇

位置锚定: ^:行首锚定,表示以什么为开头 例如: $:行尾锚定,表示以什么为结尾 例如: ^:匹配的是空行 例如: ^root$:匹配整行,而且整行只能有这一个字符串 实验&#x…

软考之软件工程基础理论知识

软件工程基础 软件开发方法 结构化方法 将整个系统的开发过程分为若干阶段,然后依次进行,前一阶段是后一阶段的工作依据按顺序完成。应用最广泛。特点是注重开发过程的整体性和全局性。缺点是开发周期长文档设计说明繁琐,工作效率低开发前要…

Golang Gin 接口返回 Excel 文件

文章目录 1.Web 页面导出数据到文件由后台实现还是前端实现?2.Golang Excel 库选型3.后台实现示例4.xlsx 库的问题5.小结参考文献 1.Web 页面导出数据到文件由后台实现还是前端实现? Web 页面导出表数据到 Excel(或其他格式)可以…

One-to-N N-to-One: Two Advanced Backdoor Attacks Against Deep Learning Models

One-to-N & N-to-One: Two Advanced Backdoor Attacks Against Deep Learning Models----《一对N和N对一:针对深度学习模型的两种高级后门攻击》 1对N: 通过控制同一后门的不同强度触发多个后门 N对1: 只有当所有N个后门都满足时才会触发…

测试为什么分白盒、黑盒、单元、集成测试?

对于想进入测试行业的小萌新,本文的诉求主要分为三块: 1、想知道分为这么多种测试的原因 2、解决各种概念问题 3、提供各种软件测试工具 安排! 一、为什么测试的概念这么多 一个软件项目就好比一部复杂的汽车,有很多零件&#x…

Java作业二

一、使用方法编写求圆面积和周长的程序,运行时提示输入圆半径,然后输出计算结果。运行效果如下图所示: import java.util.Scanner;public class Test {public static void main(String[] args) {Scanner input new Scanner(System.in);Syste…

pycharm更改远程服务器地址

一、问题描述 在运行一些项目时,我们常需要在pycharm中连接远程服务器,但万一远程服务器的ip发生了变化,该如何修改呢?我们在file-settings-python interpreter中找到远程服务器,但是发现ip是灰色的,没有办…

最新Ai智能创作系统源码V3.0,AI绘画系统/支持GPT联网提问/支持Prompt应用+搭建部署教程

一、AI创作系统 SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如…

docker--基本操作

第 1 章 Docker基础 1.1 docker简介 在这一部分我们主要讲两个方面: docker是什么、docker特点 1.1.1 docker是什么 docker是什么? docker的中文解释是码头工人。 官方解释: Docker是一个开源的容器引擎,它基于LCX容器技术&…

设计模式之两阶段终止模式

文章目录 1. 简介 2. 常见思路3. 代码实战 1. 简介 两阶段终止模式(Two-Phase Termination Pattern)是一种软件设计模式,用于管理线程或进程的生命周期。它包括两个阶段:第一阶段是准备阶段,该阶段用于准备线程或进程…

C++:string类!

Cstring 是C中的字符串。 字符串对象是一种特殊类型的容器,专门设计来操作的字符序列。 不像传统的c-strings,只是在数组中的一个字符序列,我们称之为字符数组,而C字符串对象属于一个类,这个类有很多内置的特点,在操作…

某国产中间件企业:提升研发安全能力,助力数字化建设安全发展

​某国产中间件企业是我国中间件领导者,国内领先的大安全及行业信息化解决方案提供商,为各个行业领域近万家企业客户提供先进的中间件、信息安全及行业数字化产品、解决方案及服务支撑,致力于构建安全科学的数字世界,帮助客户实现…

进程空间管理:用户态和内核态

用户态虚拟空间里面有几类数据,例如代码、全局变量、堆、栈、内存映射区等。在 struct mm_struct 里面,有下面这些变量定义了这些区域的统计信息和位置。 unsigned long mmap_base; /* base of mmap area */ unsigned long total_vm; /* Total page…