拥抱AI-ChatGPT:人类新纪元

最近大模型通用智能应用持续发酵,各大科技公司都陆续推出了基于通用大模型的智能应用产品,典型的如OpenAI的ChatGPT、微软的BingChat、百度的文心一言、360的智脑、阿里的通义千问等。当然最火的要属于ChatGPT了,从去年年底推出到现在已经有很多人体验了,并惊叹于如今的人工智能已经发展到无所不知、无所不能的程度了。

经过一段时间对ChatGPT的使用,我逐渐认同马占凯马老师《ChatGPT:人类新纪元》书中对“ChatGPT:人类新纪元”的提法。ChatGPT,如同人类历史上的单向门——火、文字、造纸、蒸汽机、电和计算机一样,ChatGPT的横空出世让大家看到了通用人工智能达到了崭新新的高度,标志着人类科技进步的又一重大里程碑,预示着我们正步入通用人工智能的新纪元。就像2007年乔布斯发布划时代的苹果智能手机iphone后,各种互联网移动应用蜂拥而至,大家再也离不开智能手机了,从此开始了移动互联的新纪元。

一、ChatGPT之初体验

对于一个码农,初接触ChatGPT时就想验证一下ChatGPT的编程功底,最近正好在研究用机器学习来识别心电图。如是问了一下ChatGPT如何用Python写一段心电图识别波形的代码。
看一下ChatGPT给我的答案:
ChatGPT代码
关键是这段代码稍作调整就可以运行起来。
chatGPT代码运行结果
看上去效果还不错!

这可不是向搜素引擎一样搜出一堆的结果给出一堆的选项让我来选,而是真正的根据我的题意自己生成了一段可以执行的代码!这就有点牛逼了。

原来一直以为码农毕竟还是干技术活的,不会像那些从事简单重复劳动的活一样被AI所替代。但是看到ChatGPT给我的答案,又更进一步的加深了我的焦虑。本来就很卷的IT行业,还要和通用人工智能卷,估计用不了多久码农这个职业就会要消失了。

二、ChatGPT与搜索引擎

有人认为ChatGPT就是搜索引擎的升级版,输入一些信息机器就给你反馈一些经过精细过滤后的信息。ChatGPT与搜索引擎完全是两类不同的东西。差别就和智能手机与以前的功能手机一样大。

ChatGPT是通过海量的数据学习后,具备真正具有智能能力的,给出的内容是根据自身的学习自动生成的。也就是我们常说的生成式AI,是一种能够从其训练数据中学习并生成新的、类似的数据或模型的机器学习技术。这种方法不依赖于预先定义的规则或模式,而是通过自我学习和适应来改进其性能。

与传统的AI相比,生成式AI的主要区别在于其学习方式和能力。传统的AI通常依赖于专家知识或编程指令来执行特定的任务。例如,一个图像识别系统可能被训练成只识别特定的图像类型,如猫或狗。然而,一旦这个系统遇到它从未见过的图像,它就无法做出正确的判断。

相反,生成式AI可以通过自我学习和适应来提高其性能。即使它从未见过某种类型的数据,它也可以通过分析大量的类似数据来学习如何处理这种数据。例如,ChatGPT通过海量的数据学习可以自动生成给出符合题意的答案。

而搜索引擎甚至连传统的AI都算不上,只是通过大数据的搜索算法将符合搜索条件的信息查询后返回到你,你还要根据自己的判断去识别和删选有用的信息。尤其是有了竞价模型后,可能搜索引擎给你的数据排名前几的都是对你来说没有什么用的,只是出价高的几个。

三、机器学习与人类学习

机器学习其实是和人类学习是一样的。基本原理如下图所示:
学习模型

机器学习的输入是海量的数据,通过模型的训练从数据中学习,生成并输出新的数据,根据输出的效果的进行评估和反馈来调整模型参数使模型的学习效果达到最优。

人类学习也是一样的,平时我们努力大量的看书、看视频、看其他资料、与人交流,其实都是在获取信息,将信息输入至大脑后,大脑经过思考输出结果,结果是对世界的认知、对人生的看法、对专业知识的领悟、输出一篇论文、输出一次演讲等等。也是对自己输出的结果进行评估和反馈来强化学习效果。

比如:学生通过大量的阅读和做题作为输入来学习知识,通过考试来评估学习效果,根据考试评估的结果来调整自己的学习方法策略来取得更好的学习成绩。

我们也是一样的,要想提高自己的认知和能力,就要通过大量的阅读(输入)思考(学习)不断的反思(反馈评估)、不断的思考调整学习方法策略等(优化模型参数),最终提高自身的能力,可以有高水平的认知输出(输出)

四、智能涌现与从量变到质变

“智能涌现” 是一个涵盖广泛领域的概念,它描述了在复杂系统中,智能行为或性能如何从简单组件或个体之间的互动中产生或 “涌现” 出来。在机器学习中,神经网络和深度学习模型可以通过大量的神经元之间的互连来实现智能任务。

在ChatGPT惊人的智能表现背后,就发生了智能涌现的现象。涌现现象是极为复杂的,因为复杂性科学就是复杂的,复杂是其基本特征。通俗的将就是当数据和模型参数达到一定的数量级后模型涌现出了新的完成任务的能力。

目前,在大模型的智能涌现方面,有三个结论。
第一,我们不知道什么时候会涌现某种新能力;
第二,我们不知道到一定规模时会涌现哪一种新的能力。
第三,我们唯一知道的是,只要数据量足够大,训练得足够深,一定会有涌现发生。

于是,我不禁又要拿出这张图:
在这里插入图片描述

这张图可以理解为从量变到质变的过程。在人类学习的过程中,学任何东西,如:学习英语,只要输入足够多通过大量的听说读写(数据量足够大)投入的时间精力够多(训练得足够深),一定会有拐点(涌现)发生,一定会成功,就像顿悟后开了挂一样。

既然基于大模型的通用人工智能不可避免的来了,就让我们一起拥抱吧!


作者博客:http://xiejava.ishareread.com/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/127708.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据分析实战 - 2 订单销售数据分析(pandas 进阶)

题目来源:和鲸社区的题目推荐: 刷题源链接(用于直接fork运行 https://www.heywhale.com/mw/project/6527b5560259478972ea87ed 刷题准备 请依次运行这部分的代码(下方4个代码块),完成刷题前的数据准备 …

【JMeter】插件管理工具

1. 官方下载地址 Documentation :: JMeter-Plugins.org 2.安装 将该插件的jar包移动到lib/ext下 3.重启JMeter就可以看到插件管理器 4. 安装,更新,删除插件 安装插件 删除插件 更新插件

python:将多个9波段影像tif文件转成numpy格式保存

作者:CSDN @ _养乐多_ 最近有粉丝问,如何将多个9波段的Aster影像tif文件转成numpy格式保存,然后输入网络进去训练。本文提供了两种思路和代码。 结果如下图所示, 文章目录 一、简单方法(分两步)二、端到端方法(一步到位)一、简单方法(分两步) 先将所有的多波段影像…

抖音协议算法最新版

抖音的协议算法是指用于推荐内容和个性化用户体验的算法系统。这些算法根据用户的兴趣、行为和偏好来推荐适合他们的视频内容,以提供更好的用户体验。 抖音的协议算法使用了大量的数据和机器学习技术来实现个性化推荐。以下是一些可能应用于抖音协议算法的技术和方法…

Linux:Docker-yum安装(2)

yum在线安装 我这里使用的是centos7默认仓库 如果没有了,可以去下面这个链接下载回来 KALItarro/default-yum: centos7-默认yum仓库 (github.com)https://github.com/KALItarro/default-yum wget -O /etc/yum.repos.d/CentOS-Base.repo https://mirrors.aliyun.…

ios原生分享

什么是 ios 系统的原生分享呢,如下图所示 具体使用系统UIActivityViewController,完整代码如下: -(void)shareAny:(NSString *)text url:(NSString *)_url imagePath:(NSString *)_imagePath {NSLog("shareAny, text:%, url:%, imagePa…

如何使用 NFTScan NFT API 在 BNB Chain 网络上开发 Web3 应用

BNB Chain 是一条以太坊虚拟机兼容的区块链,是加密资产行业顶尖项目的测试和前沿探索。通过引入权益权威证明(PoSA)共识机制,BNB Chain 创建了验证一个允许节点、代币持有者、开发者和用户都能够从区块链中获益的生态系统&#xf…

获取当前时间并格式化为str类型

import time aatime.strftime("%Y-%m-%d %H:%M:%S",time.localtime()) print(type(aa),aa)

041-第三代软件开发-QCustcomPlot波形标注

第三代软件开发-QCustcomPlot波形标注 文章目录 第三代软件开发-QCustcomPlot波形标注项目介绍QCustcomPlot波形标注效果初始化绘制 关键字: Qt、 Qml、 关键字3、 关键字4、 关键字5 项目介绍 欢迎来到我们的 QML & C 项目!这个项目结合了 QML…

内衣迷你洗衣机什么牌子好?选购内衣裤洗衣机的方法

在如今的这个年代,大多数的用户由于种种原因,连洗自身的内衣裤以及袜子都不想洗。然而内衣裤洗衣机作为近来比较火的小家电,网友的评价褒贬不一,有人说“买来就是鸡肋,用起来不方便”,“也有人买了后直呼真…

EasyCVR智能边缘网关用户信息泄漏漏洞

EasyCVR智能边缘网关用户信息泄漏漏洞 免责声明漏洞描述漏洞影响漏洞危害网络测绘Fofa: title"EasyCVR" 漏洞复现1. 构造poc2. 获取管理员账户密码3. 登录后台 免责声明 仅用于技术交流,目的是向相关安全人员展示漏洞利用方式,以便更好地提高网络安全意识和技术水平…

办公必备神器:如何用AI快速生成年终总结PPT?

2023年已经步入尾声,今年的销售业绩如何?用户同比增长率是否达到预期?部门年度API完成情况?新开发的项目进展如何?品牌全球计划在各区域市场的部署进展?…… 每年年底,不论是纵横全球的大企业&…

开发环境配置之Linux安装golang

Linux安装golang 目录 1. 下载Go发行版2. 配置工作空间3. 版本升级 1. 下载Go发行版 从官方地址:https://golang.org/dl/ 上下载合适的 二进制发行版 可以使用wget、curl等工具下载具体的go的发行版。 wget https://go.dev/dl/go1.21.3.linux-amd64.tar.gz接着…

Android---底层剖析 Window、Activity、View 三者关系

对于一个 Android 工程师来讲,或多或少都听说过 Window 的概念,并且隐约感受到它在 Activity 和 View 之间应该发挥着某种连接的作用。但如果要说出这三者之间的关系,多数 android 工程师都不知道从何下手。 Activity 的 setContentView Ac…

VScode远程连接错误:进程试图写入不存在的管道

使用VScode连接树莓派时,出现远程连接错误:进程试图写入不存在的管道 解决方案: (1)可以进入config所在文件夹,删除文件 (2)无法解决的化尝试下述方法 输入 Remotting-SSH:Settin…

自定义表格的表头根据后端的数据进行筛选是否进行自定义表头添加按钮

自定义表格的表头根据后端的数据进行筛选是否进行自定义表头添加按钮 自定义表格的表头根据后端的数据进行筛选是否进行自定义表头添加按钮 <template><div class"box"><el-table :data"msgMapList" border class"table">&l…

Java入门篇 之 逻辑控制(练习题篇)

博主碎碎念: 练习题是需要大家自己打的请在自己尝试后再看答案哦&#xff1b; 个人认为&#xff0c;只要自己努力在将来的某一天一定会看到回报&#xff0c;在看这篇博客的你&#xff0c;不就是在努力吗&#xff0c;所以啊&#xff0c;不要放弃&#xff0c;路上必定坎坷&#x…

c++ Vector 学习

vevtor 是c 中自带得动态数组&#xff0c;dynamic array array can hold different values/objects of same type 可以装不同得类型或者对象 dynamic size can be changed at runtime 可以运行得时候改变 要使用的话&#xff0c;先引入 #include <vector> std::vector…

Kafka基本原理、生产问题总结及性能优化实践 | 京东云技术团队

Kafka是最初由Linkedin公司开发&#xff0c;是一个分布式、支持分区的&#xff08;partition&#xff09;、多副本的&#xff08;replica&#xff09;&#xff0c;基于zookeeper协调的分布式消息系统&#xff0c;它的最大的特性就是可以实时的处理大量数据以满足各种需求场景&a…

Mac 解决 APP 快捷键冲突

打开 Mac 系统设置键盘->键盘快捷键->App快捷键->添加快捷键&#xff08;加号&#xff09;->标题需要和tab名称完全一致&#xff08;包括中英文、标点符号等&#xff0c;如下图&#xff09;设置快捷键即可 Reference&#xff1a; https://www.cnblogs.com/Questio…