基于深度学习的植物识别算法 - cnn opencv python 计算机竞赛

文章目录

  • 0 前言
  • 1 课题背景
  • 2 具体实现
  • 3 数据收集和处理
  • 3 MobileNetV2网络
  • 4 损失函数softmax 交叉熵
    • 4.1 softmax函数
    • 4.2 交叉熵损失函数
  • 5 优化器SGD
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的植物识别算法 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

植物在地球上是一种非常广泛的生命形式,直接关系到人类的生活环境,目前,植物识别主要依靠相关行业从业人员及有经验专家实践经验,工作量大、效率低。近年来,随着社会科技及经济发展越来越快,计算机硬件进一步更新,性能也日渐提高,数字图像采集设备应用广泛,设备存储空间不断增大,这样大量植物信息可被数字化。同时,基于视频的目标检测在模式识别、机器学习等领域得到快速发展,进而基于图像集分类方法研究得到发展。
本项目基于深度学习实现图像植物识别。

2 具体实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 数据收集和处理

数据是深度学习的基石
数据的主要来源有: 百度图片, 必应图片, 新浪微博, 百度贴吧, 新浪博客和一些专业的植物网站等
爬虫爬取的图像的质量参差不齐, 标签可能有误, 且存在重复文件, 因此必须清洗。清洗方法包括自动化清洗, 半自动化清洗和手工清洗。
自动化清洗包括:

  • 滤除小尺寸图像.
  • 滤除宽高比很大或很小的图像.
  • 滤除灰度图像.
  • 图像去重: 根据图像感知哈希.

半自动化清洗包括:

  • 图像级别的清洗: 利用预先训练的植物/非植物图像分类器对图像文件进行打分, 非植物图像应该有较低的得分; 利用前一阶段的植物分类器对图像文件 (每个文件都有一个预标类别) 进行预测, 取预标类别的概率值为得分, 不属于原预标类别的图像应该有较低的得分. 可以设置阈值, 滤除很低得分的文件; 另外利用得分对图像文件进行重命名, 并在资源管理器选择按文件名排序, 以便于后续手工清洗掉非植物图像和不是预标类别的图像.
  • 类级别的清洗

手工清洗: 人工判断文件夹下图像是否属于文件夹名所标称的物种, 这需要相关的植物学专业知识, 是最耗时且枯燥的环节, 但也凭此认识了不少的植物.

3 MobileNetV2网络

简介

MobileNet网络是Google最近提出的一种小巧而高效的CNN模型,其在accuracy和latency之间做了折中。

主要改进点

相对于MobileNetV1,MobileNetV2 主要改进点:

  • 引入倒残差结构,先升维再降维,增强梯度的传播,显著减少推理期间所需的内存占用(Inverted Residuals)
  • 去掉 Narrow layer(low dimension or depth) 后的 ReLU,保留特征多样性,增强网络的表达能力(Linear Bottlenecks)
  • 网络为全卷积,使得模型可以适应不同尺寸的图像;使用 RELU6(最高输出为 6)激活函数,使得模型在低精度计算下具有更强的鲁棒性
  • MobileNetV2 Inverted residual block 如下所示,若需要下采样,可在 DW 时采用步长为 2 的卷积
  • 小网络使用小的扩张系数(expansion factor),大网络使用大一点的扩张系数(expansion factor),推荐是5~10,论文中 t = 6 t = 6t=6

倒残差结构(Inverted residual block

ResNet的Bottleneck结构是降维->卷积->升维,是两边细中间粗

而MobileNetV2是先升维(6倍)-> 卷积 -> 降维,是沙漏形。
在这里插入图片描述区别于MobileNetV1,
MobileNetV2的卷积结构如下:
在这里插入图片描述
因为DW卷积不改变通道数,所以如果上一层的通道数很低时,DW只能在低维空间提取特征,效果不好。所以V2版本在DW前面加了一层PW用来升维。

同时V2去除了第二个PW的激活函数改用线性激活,因为激活函数在高维空间能够有效地增加非线性,但在低维空间时会破坏特征。由于第二个PW主要的功能是降维,所以不宜再加ReLU6。
在这里插入图片描述
tensorflow相关实现代码

import tensorflow as tfimport numpy as npfrom tensorflow.keras import layers, Sequential, Modelclass ConvBNReLU(layers.Layer):def __init__(self, out_channel, kernel_size=3, strides=1, **kwargs):super(ConvBNReLU, self).__init__(**kwargs)self.conv = layers.Conv2D(filters=out_channel, kernel_size=kernel_size, strides=strides, padding='SAME', use_bias=False,name='Conv2d')self.bn = layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='BatchNorm')self.activation = layers.ReLU(max_value=6.0)   # ReLU6def call(self, inputs, training=False, **kargs):x = self.conv(inputs)x = self.bn(x, training=training)x = self.activation(x)return xclass InvertedResidualBlock(layers.Layer):def __init__(self, in_channel, out_channel, strides, expand_ratio, **kwargs):super(InvertedResidualBlock, self).__init__(**kwargs)self.hidden_channel = in_channel * expand_ratioself.use_shortcut = (strides == 1) and (in_channel == out_channel)layer_list = []# first bottleneck does not need 1*1 convif expand_ratio != 1:# 1x1 pointwise convlayer_list.append(ConvBNReLU(out_channel=self.hidden_channel, kernel_size=1, name='expand'))layer_list.extend([# 3x3 depthwise conv layers.DepthwiseConv2D(kernel_size=3, padding='SAME', strides=strides, use_bias=False, name='depthwise'),layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='depthwise/BatchNorm'),layers.ReLU(max_value=6.0),#1x1 pointwise conv(linear) # linear activation y = x -> no activation functionlayers.Conv2D(filters=out_channel, kernel_size=1, strides=1, padding='SAME', use_bias=False, name='project'),layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='project/BatchNorm')])self.main_branch = Sequential(layer_list, name='expanded_conv')def call(self, inputs, **kargs):if self.use_shortcut:return inputs + self.main_branch(inputs)else:return self.main_branch(inputs)  


4 损失函数softmax 交叉熵

4.1 softmax函数

Softmax函数由下列公式定义
在这里插入图片描述
softmax 的作用是把 一个序列,变成概率。

在这里插入图片描述

softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,所有概率的和将等于1。

python实现

def softmax(x):shift_x = x - np.max(x)    # 防止输入增大时输出为nanexp_x = np.exp(shift_x)return exp_x / np.sum(exp_x)

PyTorch封装的Softmax()函数

dim参数:

  • dim为0时,对所有数据进行softmax计算

  • dim为1时,对某一个维度的列进行softmax计算

  • dim为-1 或者2 时,对某一个维度的行进行softmax计算

    import torch
    x = torch.tensor([2.0,1.0,0.1])
    x.cuda()
    outputs = torch.softmax(x,dim=0)
    print("输入:",x)
    print("输出:",outputs)
    print("输出之和:",outputs.sum())
    

4.2 交叉熵损失函数

定义如下:
在这里插入图片描述
python实现

def cross_entropy(a, y):return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))# tensorflow version
loss = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y), reduction_indices=[1]))# numpy version
loss = np.mean(-np.sum(y_*np.log(y), axis=1))

PyTorch实现
交叉熵函数分为二分类(torch.nn.BCELoss())和多分类函数(torch.nn.CrossEntropyLoss()

# 二分类 损失函数loss = torch.nn.BCELoss()l = loss(pred,real)# 多分类损失函数loss = torch.nn.CrossEntropyLoss()

5 优化器SGD

简介
SGD全称Stochastic Gradient Descent,随机梯度下降,1847年提出。每次选择一个mini-
batch,而不是全部样本,使用梯度下降来更新模型参数。它解决了随机小批量样本的问题,但仍然有自适应学习率、容易卡在梯度较小点等问题。
在这里插入图片描述
pytorch调用方法:

torch.optim.SGD(params, lr=<required parameter>, momentum=0, dampening=0, weight_decay=0, nesterov=False)

相关代码:

    def step(self, closure=None):"""Performs a single optimization step.Arguments:closure (callable, optional): A closure that reevaluates the modeland returns the loss."""loss = Noneif closure is not None:loss = closure()for group in self.param_groups:weight_decay = group['weight_decay'] # 权重衰减系数momentum = group['momentum'] # 动量因子,0.9或0.8dampening = group['dampening'] # 梯度抑制因子nesterov = group['nesterov'] # 是否使用nesterov动量for p in group['params']:if p.grad is None:continued_p = p.grad.dataif weight_decay != 0: # 进行正则化# add_表示原处改变,d_p = d_p + weight_decay*p.datad_p.add_(weight_decay, p.data)if momentum != 0:param_state = self.state[p] # 之前的累计的数据,v(t-1)# 进行动量累计计算if 'momentum_buffer' not in param_state:buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()else:# 之前的动量buf = param_state['momentum_buffer']# buf= buf*momentum + (1-dampening)*d_pbuf.mul_(momentum).add_(1 - dampening, d_p)if nesterov: # 使用neterov动量# d_p= d_p + momentum*bufd_p = d_p.add(momentum, buf)else:d_p = buf# p = p - lr*d_pp.data.add_(-group['lr'], d_p)return loss

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/127443.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

投资者如何保障个人利益?行业律师与欧科云链专家给出建议

香港作为全球加速拥抱Web3变革的引领之地&#xff0c;规定自今年6月起在香港经营虚拟资产服务业务需申领牌照。蜂拥而至的Web3创业公司&#xff0c;伺机而动的加密货币交易所&#xff0c;以及跃跃欲试的行业从业者&#xff0c;都让这座金融之都热闹非凡。但近期伴随JPEX诈骗案等…

【案例】3D地球

效果图&#xff1a; 直接放源码 <!DOCTYPE html> <html> <head><meta http-equiv"Content-Type" content"text/html; charsetutf-8" /><meta name"viewport" content"initial-scale1.0, user-scalableno" …

window10 mysql8.0 修改端口port不生效

mysql的默认端口是3306&#xff0c;我想修改成3307。 查了一下资料&#xff0c;基本上都是说先进入C:\Program Files\MySQL\MySQL Server 8.0这个目录。 看看有没有my.ini&#xff0c;没有就新建。 我这里没有&#xff0c;就新建一个&#xff0c;然后修改port&#xff1a; […

IMX6ULL——GPIO

本章目的&#xff1a;使用GPIO点亮一个LED灯 1.LED原理 &#xff08;1&#xff09;LED类型&#xff1a;插脚LED&#xff1b;贴片LED。 &#xff08;2&#xff09;LED点亮电路 法一&#xff1a; 法二&#xff1a; 我们本章使用法二&#xff0c;使用IMX6ULL的GPIO引脚输出高低电…

树结构及其算法-二叉树节点的删除

目录 树结构及其算法-二叉树节点的删除 C代码 树结构及其算法-二叉树节点的删除 二叉树节点的删除操作稍为复杂&#xff0c;可分为以下3种情况。 删除的节点为树叶&#xff0c;只要将其相连的父节点指向NULL即可。删除的节点只有一棵子树。删除的节点有两棵子树。要删除节点…

Hadoop HDFS(分布式文件系统)

一、Hadoop HDFS(分布式文件系统) 为什么要分布式存储数据 假设一个文件有100tb&#xff0c;我们就把文件划分为多个部分&#xff0c;放入到多个服务器 靠数量取胜&#xff0c;多台服务器组合&#xff0c;才能Hold住 数据量太大&#xff0c;单机存储能力有上限&#xff0c;需要…

Java Soce

1.Server and client server 我们经常需要关闭一些实例&#xff0c;比如server&#xff0c;所以我们使用这个接口&#xff0c;来实现自动关闭。 我们可以这样写&#xff0c;手动关闭server public class Server {public static void main(String args[]){try {ServerSocket…

panabit日志审计singleuser_action.php任意用户添加漏洞复现

文章目录 panabit日志审计singleuser_action.php任意用户添加漏洞复现0x01 前言0x02 漏洞描述0x03 影响版本0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 panabit日志审计singleuser_action.php任意用户添加漏洞复现 0x01 前言 免责声明&#xff1a;请勿利用文章…

flutter之bloc使用详解

flutter中一切皆为Widget&#xff0c;因此在我们开发中&#xff0c;往往业务和UI逻辑写在一起&#xff0c;这样不利于代码维护&#xff0c;因此状态管理框架久诞生了&#xff0c;这篇就开始讲一讲Bloc。 对于Bloc库有两个&#xff0c;如下图&#xff1a; flutter_bloc其实是对…

Ubuntu连不上WiFi 或者虽然能连上校园网,但是浏览器打不开登录页面

写在前面 自己的电脑环境&#xff1a; Ubuntu20.04 一、问题描述 自己的 Ubuntu 遇到连接不上 除校园网之外的其他WiFi, 或者 虽然能连上校园网&#xff0c;但是浏览器打不开登录页面的问题。 二、解决方法 出现这种问题的原因可能是 之前开过VPN, 导致系统的网络设置出现…

CSS3网页布局基础

CSS布局始于第2个版本&#xff0c;CSS 2.1把布局分为3种模型&#xff1a;常规流、浮动、绝对定位。CSS 3推出更多布局方案&#xff1a;多列布局、弹性盒、模板层、网格定位、网格层、浮动盒等。本章重点介绍CSS 2.1标准的3种布局模型&#xff0c;它们获得所有浏览器的全面、一致…

回归预测 | Matlab实现POA-CNN-SVM鹈鹕算法优化卷积神经网络-支持向量机多变量回归预测

Matlab实现POA-CNN-SVM鹈鹕算法优化卷积神经网络-支持向量机多变量回归预测 目录 Matlab实现POA-CNN-SVM鹈鹕算法优化卷积神经网络-支持向量机多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.POS-CNN-SVM鹈鹕算法优化卷积神经网络-支持向量机的多变量回归…

将有序数组转换为二叉搜索树

做这一题的前提是要搞懂一些概念&#xff0c;比如什么是高度平衡的二叉树&#xff1f;什么又是搜索树&#xff1f; 二叉搜索树&#xff08;Binary Search Tree&#xff09; 它或者是一棵空树&#xff0c;或者是具有下列性质的二叉树&#xff1a; 若它的左子树不空&#xff0c;则…

CV计算机视觉每日开源代码Paper with code速览-2023.10.31

精华置顶 墙裂推荐&#xff01;小白如何1个月系统学习CV核心知识&#xff1a;链接 点击CV计算机视觉&#xff0c;关注更多CV干货 论文已打包&#xff0c;点击进入—>下载界面 点击加入—>CV计算机视觉交流群 1.【基础网络架构】&#xff08;NeurIPS2023&#xff09;Fa…

EVM6678L 开发教程: IBL-TFTP 引导 elf 文件

目录 EVM6678L 开发教程: IBL-TFTP 引导 elf 文件安装 Tftpd64测试工程测试说明 EVM6678L 开发教程: IBL-TFTP 引导 elf 文件 参考: "C:\ti\mcsdk_2_01_02_06\tools\boot_loader\examples\i2c\tftp\docs\README.txt" 此教程介绍如何在 EVM6678L 开发板上实现 IBL-…

uni-starter 使用常见问题

1. Invalid uni-id config file 没有找到uni-id文件导致 需要在uniCloud-aliyun/cloudfunctions/common/uni-config-center/uni-id/下新建 config.json 如果没有uni-id 就新建一个。 注意&#xff1a;config.json是一个标准json文件&#xff0c;不支持注释 uni-starter 按照…

树形结构数据展示及返回上一级

11月1日&#xff0c;又是搬砖的一天&#xff0c;让我们红尘作伴&#xff0c;活的潇潇洒洒。。。。。。 html <template><view class"content"><view><input class"sreachTool" v-model"toolValue"/><van-icon name…

进口跨境电商商城源码(海关179接口+海关报关+三单对碰)

海关179接口 现如今&#xff0c;跨境电商正在飞速发展&#xff0c;进口商品成为人们消费的热点。然而&#xff0c;进口商品的报关手续繁琐&#xff0c;而海关179接口的出现解决了这个问题。海关179接口是指与海关电子数据交换的商业接口&#xff0c;可以实现与海关进行数据对接…

【生物信息学】单细胞RNA测序数据分析:计算亲和力矩阵(基于距离、皮尔逊相关系数)及绘制热图(Heatmap)

文章目录 一、实验介绍二、实验环境1. 配置虚拟环境2. 库版本介绍 三、实验内容0. 导入必要的库1. 读取数据集2. 质量控制&#xff08;可选&#xff09;3. 基于距离的亲和力矩阵4. 绘制基因表达的Heatmap5. 基于皮尔逊相关系数的亲和力矩阵6. 代码整合 一、实验介绍 计算亲和力…

【自然语言处理】【长文本处理】RMT:能处理长度超过一百万token的Transformer

相关博客 【自然语言处理】【长文本处理】RMT&#xff1a;能处理长度超过一百万token的Transformer 【自然语言处理】【大模型】MPT模型结构源码解析(单机版) 【自然语言处理】【大模型】ChatGLM-6B模型结构代码解析(单机版) 【自然语言处理】【大模型】BLOOM模型结构源码解析(…