Mysql系列 -索引模型数据结构

索引就是排好序的数据结构,可以帮助我们快速的查找到数据,那么底层的数据到底是如何存储的呢?

为什么InnoDB 用的是B+tree 存储结构?

大家可以看看这个可视化的网站
数据结构和算法的可视化工具
在这里插入图片描述
可以看到数据结构里面有链表,二叉树,AVL,红黑树,Hash,B tree ,B+tree等等,可以点击进入每个数据结构的可视化页面,玩一玩,看看插入时数据是怎么样排序的

1.二叉查找树(Binary Search Trees)

二叉树的特点是左边节点比右边节点小,每个叶子节点下的子节点最多只能有2个,每次插入都会先比较根节点,小的往左边,大的往右边。
在这里插入图片描述

缺点
由于只能有2个叶子节点,所以数据量大的时候树的层级会非常高,而且当插入的数据都是有序的,如下图,就会造成斜树,这样就退化成有序链表了
在这里插入图片描述

2.平衡搜索二叉树(AVL trees)

解决了斜树的问题,每次插入是时候节点会进行旋转,左小右大,减少了树的高度,非叶子节点最多拥有2个叶子节点,同时树的左右2边层级 相差不会大于1;
在这里插入图片描述

右旋LL:当想左边节的左子节点点插入数据,例如插入10,8,6的时候,为了保持树的平衡,会把10节点进行右旋,试树能够平衡
在这里插入图片描述
左旋RR:当想右边节的右子节点点插入数据,例如插入10,12,14的时候,为了保持树的平衡,会把10节点进行左旋,试树能够平衡

在这里插入图片描述

缺点
虽然解决了斜树的问题,但是还是会造成树的层级太高,每个叶子节点只能有2个子节点,查询的时候会造成IO次数太多

3.红黑树(Red-Black Trees)

在这里插入图片描述

网上有大牛总结了个顺口溜:根节点必黑,新增是红色,只能黑连黑,不能红连红; 爸叔通红就变色,爸红叔黑就旋转,哪边黑往哪边转

缺点
红黑树的缺点是每个叶子节点只能有2个子节点,查询的时候会造成IO次数太多,同时树的层级会非常高

红黑树和AVL树的区别

  • 红黑树不是完全平衡,不会像AVL那样要求左右2边节点的 绝对值差不大于1,它只要求部分达到平衡,但是提出了为节点增加颜色,红黑是用非严格的平衡来换取增删节点时候旋转次数的降低,任何不平衡都会在三次旋转之内解决。
  • AVL是完全平衡,在增加或者删除节点的时候,旋转的次数比红黑树要多。左右2边节点的 绝对值差不大于1。由于是完全平衡,所有查询效率要比红黑树高
  • 复咋情况下,就是如有删除节点,树要回复平衡,红黑树的复衡效率更高,因为最多只需要旋转3次就能回复平衡,而AVL树可能会旋转多次,效率更低
  • 在实际运用中,如果搜索的次数远远大于插入和删除,那么选择AVL,因为查询效率更高,如果搜索,插入删除次数几乎差不多,应该选择红黑树,因为维护效率更高。

4.Hash

Hash实际上是散列函数,它可以帮助我们大幅提升检索数据的效率,这是因为 Hash 只需要一步就可以找到对应的取值,算法复杂度为 O(1)。Hash 算法是通过某种确定性的算法(比如 MD5、SHA1、SHA2、SHA3);

采用 Hash 进行检索效率非常高,例如查 id = 100的数据,基本上一次检索就可以找到数据,而 B+ 树需要自顶向下依次查找,多次访问节点才能找到数据,中间需要多次 I/O 操作,从效率来说 Hash 比 B+ 树更快。但是,hash 有很多缺点

缺点

  • Hash 索引不能进行范围查询,例如id > 100就无法匹配索引
  • Hash 索引不支持最左匹配原则,例如有联合索引 a_b_c_index,abc3个字段,Hash 索引在计算Hash 值的时候是将abc3个字段合并后再一起计算 Hash 值,不会针对每个索引单独计算 Hash 值。因此如果用到联合索引的一个或者几个索引时,联合索引无法匹配
  • Hash 索引不支持 ORDER BY 排序
  • 当数据量很大时,hash冲突的几率也会很是大,造成hash碰撞

5.B tree(多路平衡查找树)

上面讲到的树有个共同的缺点,就是每个叶子节点只能有2个子节点,这样的话都会造成树的层级太高,IO效率太低。

B-tree 利用了磁盘块的特性进行构建的树。每个磁盘块一个节点,每个节点包含了很关键字。把树的节点关键字增多后树的层级比原来的二叉树少了,这样就变成了N叉树,并且每个节点保存key和value和data,这样的存储方式的好处就是只要查询到对应数据的键值,就直接返回data,大大提高了查询效率,减少数据查找的次数和复杂度
在这里插入图片描述

缺点
这样的存储结构有个缺点,就是由于每个节点都保存了key-value-data,那么一旦这个data的数据量大的话,例如这个数据有1k,10k或者更多,那么一个磁盘块(默认16KB)就无法保存这么多节点了,因为空间是有限的,保存不了的话就会生成子节点,这样的话树的高度又增加了,磁盘IO又多了,于是B树进行优化,就有了B+树

6.B+tree

B+树和 B树最大的不同是非叶子节点只储存key和value信息,没有data,data 只保存在叶子节点上。这样做的好处是一个磁盘块可以存更多的节点,因为不需要存data了,树的高度就更矮了IO次数更低。

而且所有的叶子节点都是有序的双向链表,所有数据是按照顺序排列的,这样做的好处是范围查找,排序查找,分组查找的效率更高了,举个例子,例如查 23 < id < 52区间范围的数据,只需要找到23的这个数据,再通过有序链表,找到52,就可以快速的返回范围数据,减少了IO次数,提高查询效率
在这里插入图片描述

InnoDb的索引数据模型

在 InnoDB 中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。又因为前面我们提到的,InnoDB 使用了 B+ 树索引模型,所以数据都是存储在 B+ 树中的。每一个索引在 InnoDB 里面对应一棵 B+ 树
从图中不难看出,根据叶子节点的内容,索引类型分为主键索引和非主键索引。主键索引的叶子节点存的是整行数据。在 InnoDB 里,主键索引也被称为聚簇索引(clustered index)。非主键索引的叶子节点内容是主键的值。在 InnoDB 里,非主键索引也被称为二级索引(secondary index)。

主键索引和非主键索引的查询区别

如果语句是 select * from T where ID=500,即主键查询方式,则只需要搜索 ID 这棵 B+ 树;
如果语句是 select * from T where k=5,即普通索引查询方式,则需要先搜索 k 索引树,得到 ID 的值为 500,再到 ID 索引树搜索一次。这个过程称为回表。也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。

索引维护

B+ 树为了维护索引有序性,在插入新值的时候需要做必要的维护;索引的每一页存放的是索引,如果新添加一个索引的话,这个索引素在的页内容满的话就需要新增一页,这时候会引起索引的移动到新的也上,影响性能
除了性能外,索引页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约 50%。要求建表语句里一定要有自增主键。当然事无绝对,我们来分析一下哪些场景下应该使用自增主键,而哪些场景下不应该;也就是说,自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。除了考虑性能外,我们还可以从存储空间的角度来看。假设你的表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号做主键,那么每个二级索引的叶子节点占用约 20 个字节,而如果用整型做主键,则只要 4 个字节,如果是长整型(bigint)则是 8 个字节。显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小;所以,从性能和存储空间方面考量,自增主键往往是更合理的选择。
有没有什么场景适合用业务字段直接做主键的呢?还是有的。比如,有些业务的场景需求是这样的:**只有一个索引;该索引必须是唯一索引。你一定看出来了,这就是典型的 KV 场景。**由于没有其他索引,所以也就不用考虑其他索引的叶子节点大小的问题。这时候我们就要优先考虑上一段提到的“尽量使用主键查询”原则,直接将这个索引设置为主键,可以避免每次查询需要搜索两棵树。

7.写在最后

总结了这么多,如果你还是不明白为什么要用B+tree做存储结构,那就再反复的学习吧

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/126647.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何确认目标期刊被SCI或EI收录?

原创内容&#xff0c;仅供参考&#xff0c;欢迎大家批评指正&#xff01; 目录 通过Web of Science查询SCI期刊1. 登录Web of Science2. 查找目标期刊3. 查看期刊信息 通过Scopus查询EI期刊1. 登录Scopus2. 查找目标期刊3. 查看期刊信息 参考 通过Web of Science查询SCI期刊 1…

学习c++的第二天

目录 数据类型 基本数据类型 typedef 声明 枚举类型 类型转换 变量类型 变量定义 变量声明 左值&#xff08;Lvalues&#xff09;和右值&#xff08;Rvalues&#xff09; 变量作用域 数据类型 基本数据类型 C 为程序员提供了种类丰富的内置数据类型和用户自定义的数…

相册里的视频怎么提取音频?帮你整理了几个必备的!

有的时候视频中的音频包含重要信息&#xff0c;如对话、旁白、音乐等。提取音频不仅可以节省存储空间&#xff0c;还方便对这些信息进行单独处理和利用。那么如何提取音频呢&#xff1f;下面介绍了3种方法~ 方法一&#xff1a;直接使用手机相册自带功能 1、打开手机相册&#…

C语言重点突破(五) 动态内存管理

前言 动态内存管理是指在一个程序运行期间动态地分配、释放和管理内存空间的过程。在应用程序中&#xff0c;当程序需要使用变量或对象时&#xff0c;需要在内存中分配一段空间&#xff0c;并在使用完毕后释放该空间&#xff0c;以提高程序的效率和性能。本文意在介绍常用动态…

PostGreSQL:JSON|JSONB数据类型

JSON JSON 指的是 JavaScript 对象表示法&#xff08;JavaScript Object Notation&#xff09;JSON 是轻量级的文本数据交换格式JSON 独立于语言&#xff1a;JSON 使用 Javascript语法来描述数据对象&#xff0c;但是 JSON 仍然独立于语言和平台。JSON 解析器和 JSON 库支持许…

Android WMS——WMS窗口添加(十)

Android 的 WMS&#xff08;Window Manager Service&#xff09;是一个关键组件&#xff0c;负责管理窗口的创建、显示、布局和交互等。Window 的操作有两大部分&#xff0c;一部分是 WindowManager 来处理&#xff0c;一部分是 WMS 来处理&#xff0c;如下图所示&#xff1a; …

Android渲染流程

目录 缓冲区的不同生命周期代表当前缓冲区的状态&#xff1a; 多个源 ViewRootImpl&#xff1a; Android4.0&#xff1a; Android5.0&#xff1a; Android应用程序调用SurfaceFliger将测量&#xff0c;布局&#xff0c;绘制好的Surface借助GPU渲染显示到屏幕上。 一个Acti…

搜维尔科技:Varjo在心理学、医学研究、技术、工程学等领域都在使用

该软件用于心理学、医学研究、可用性、品牌和营销等领域。vajio头显组合到了运动8.0平台中,提供了在高保真虚拟环境中进行的行为研究,否则这些环境的成本太高,不切实际,甚至无法在现实世界中再现。 在心理学、医学研究、可用性、技术、工程学、市场营销等领域工作的学术和商业研…

【编程语言发展史】C语言的诞生及其影响

目录 一、C语言的历史背景 二、C语言的设计思想 三、C语言的语法特点 四、C语言的应用领域 五、C语言的影响 六、总结 C语言是一种高级计算机编程语言&#xff0c;它的诞生和发展对计算机科学和软件工程领域产生了深远的影响。本文将详细介绍C语言的诞生及其影响&#xf…

分类预测 | Matlab实现KOA-CNN-GRU-selfAttention多特征分类预测(自注意力机制)

分类预测 | Matlab实现KOA-CNN-GRU-selfAttention多特征分类预测&#xff08;自注意力机制&#xff09; 目录 分类预测 | Matlab实现KOA-CNN-GRU-selfAttention多特征分类预测&#xff08;自注意力机制&#xff09;分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matla…

AI图像识别初次尝试

1.人形识别结果 2.代码 pythonOpenCVyolov3训练库&#xff0c;代码如下&#xff1a; #!/usr/bin/env python3 # -*- coding: utf-8 -*- import cv2 import numpy as np import osimgFiles["pic03.jpg", "pic04.jpg"]netNone classesNone colorsNonedef r…

Python小试牛刀:GUI(图形界面)实现计算器UI界面(二)

上一篇&#xff1a;Python小试牛刀&#xff1a;GUI&#xff08;图形界面&#xff09;实现计算器UI界面&#xff08;一&#xff09;-CSDN博客 在上一篇文章中介绍了Python GUI常用的库&#xff0c;以及运用GUI标准库tkinter仅设计了计算器的UI界面。 而在本篇文章&#xff0c;…

【c++|opencv】二、灰度变换和空间滤波---5.中值滤波

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 1. 中值滤波 #include<iostream> #include<opencv2/opencv.hpp> #include"Salt.h"using namespace cv; using namespace std;voi…

一篇文章认识【性能测试】

一、 性能测试术语解释 1. 响应时间 响应时间即从应用系统发出请求开始&#xff0c;到客户端接收到最后一个字节数据为止所消耗的时间。响应时间按软件的特点再可以细分&#xff0c;如对于一个 C/S 软件的响应时间可以细分为网络传输时间、应用服务器处理时间、数据库服务器…

python类如何实例化对象

python类如何实例化对象 1、把类看作是定制的数据类型。既然是类型&#xff0c;只能用来表示数据的类型&#xff0c;不能直接用来保存数据。**要保存数据&#xff0c;首先需要创建一个类似于这类容器的东西&#xff0c;称为对象(或例子)。通过类别产生对象的过程称为例子。 2、…

畅销书《Kali Linux高级渗透测试》更新版速速查收~

懒大王感谢大家的关注和三连支持~ 作者简介&#xff1a; 懒大王敲代码&#xff0c;正在学习嵌入式方向有关课程stm32&#xff0c;网络编程&#xff0c;数据结构C/C等 今天给大家推荐畅销书《Kali Linux高级渗透测试》&#xff0c;希望大家能觉得实用&#xff01; 欢迎大家点赞…

C语言--温度转化(把华氏度转换为摄氏度)

一.问题描述: 有人用温度计测量出用华氏法表示的温度,今要求把它转换为以摄氏法表示的温度,转换公式如下: 这个代码是C语言的入门代码&#xff0c;难点在于5/9在程序中如何写出。在计算机中5/9等于1。 /符号&#xff1a;整除问题(整数/整数 结果是丢弃小数的整数) 5/2 2。那…

十五、redis的使用

目录 一、简介1.1 nosql介绍1.2 redis特性1.3 redis优势1.4 redis应用场景 二、安装2.1 Macos下安装2.2 Linux下安装2.4 客户端连接2.5 切换数据库 三、数据库操作3.1 string类型3.2 键的操作3.3 Hash类型3.4 list类型3.5 set类型3.6 zset类型 四、和python交互4.1 安装redis包…

【AI视野·今日Sound 声学论文速览 第三十二期】Tue, 24 Oct 2023

AI视野今日CS.Sound 声学论文速览 Tue, 24 Oct 2023 Totally 20 papers &#x1f449;上期速览✈更多精彩请移步主页 Interesting: &#x1f4da;nvas3d, 基于任意录音和室内3D信息合成重建不同听角&#xff08;位置&#xff09;处的新的声音。(from apple cmu) website: htt…

数据结构详细笔记——二叉树

文章目录 二叉树的定义和基本术语特殊的二叉树满二叉树完全二叉树二叉排序树平衡二叉树 二叉树的常考性质完全二叉树的常考性质二叉树的存储结构顺序存储链式存储 二叉树的先中后序遍历先序遍历&#xff08;空间复杂度&#xff1a;O&#xff08;h&#xff09;&#xff09;中序遍…