关于线性模型的底层逻辑解读 (机器学习 细读01)

一 多元线性回归

         线性回归是机器学习中 有监督机器学习 下的一种算法。 回归问题主要关注的是因变量(需要预测的值,可以是一个也可以是多个)和一个或多个数值型的自变量(预测变量)之间的关系。

  1. 需要预测的值:即目标变量,target,y,连续值预测变量
  2. 影响目标变量的因素: ... ,可以是连续值也可以是离散值。
  3. 因变量和自变量之间的关系:即模型,model,是我们要求解的。

1.1 简单线性回归

前面提到过,算法说白了就是公式,简单线性回归属于一个算法,它所对应的公式。

        y = wx + b

这个公式中,y 是目标变量即未来要预测的值,x 是影响 y 的因素,w,b 是公式上的参数即要求的模型。其实 b 就是咱们的截距,w 是斜率嘛! 所以很明显如果模型求出来了,未来影响 y 值的未知数就是一个 x 值,也可以说影响 y 值 的因素只有一个,所以这是就叫简单线性回归的原因。

1.2 最优解

  • Actual value: 真实值,一般使用 y 表示。
  • Predicted value预测值,是把已知的 x 带入到公式里面和猜出来的参数 w,b 计算得到的,一般使用 $\hat{y}$表示。
  • Error误差,预测值和真实值的差距,一般使用 \varepsilon表示。
  • 最优解: 尽可能的找到一个模型使得整体的 误差最小,整体的误差通常叫做损失 Loss。
  • Loss: 整体的误差,Loss 通过损失函数 Loss function 计算得到。

1.3 多元线性回归

现实生活中,往往影响结果 y 的因素不止一个,这时 x 就从一个变成了 n 个,X_1.....$X_n$同时简单线性回归的公式也就不在适用了。多元线性回归公式如下:

        $\hat{y} = w_1X_1 + w_2X_2 +....... + w_nX_n + b$

使用向量来表示:

        $\hat{y} = W^TX$

二 高斯函数

2.1 正太分布

正态分布(Normal Distribution),也被称为高斯分布(Gaussian Distribution),正态分布在实际应用中非常有用,因为许多自然现象和人类行为都近似遵循正态分布。例如,身高、体重、智商、测量误差等都可以用正态分布来描述。在统计分析中,许多参数估计和假设检验方法都基于正态分布的假设。在统计建模中,通常默认每次线性模型计算的误差与正确值的误差符合正态分布。基于这一假设,可以通过计算使误差最小的正态分布值来估算线性模型的权重。这种方法有助于拟合模型以更好地解释数据和进行预测。主要特点:

  1. 对称性:正态分布是一个对称分布,其均值、中位数和众数都位于分布的中心,也就是分布的峰值。

  2. 集中趋势:正态分布具有集中趋势,数据点更有可能接近均值,而在离均值越远的地方概率逐渐减小。

  3. 定义性:正态分布由两个参数决定,均值(μ)和方差(σ^2),这些参数决定了分布的中心和分散度。

  4. 标准正态分布:当均值为0,方差为1时,正态分布被称为标准正态分布(Standard Normal Distribution)。标准正态分布的概率密度函数可以用标准正态分布表来查找。

  5. 经典的钟形曲线:正态分布的概率密度函数呈现出典型的钟形曲线,两侧尾部逐渐减小,且在均值处达到峰值。

正态分布的概率密度函数(Probability Density Function)为:

2.2 误差分析

假定所有的样本的误差都是独立的,有上下的震荡,震荡认为是随机变量,足够多的随机变量叠加之后形成的分布,它服从的就是正态分布,因为它是正常状态下的分布,也就是高斯分布!均值是某一个值,方差是某一个值。 方差我们先不管,均值我们总有办法让它去等于零 0 的,因为我们这里是有截距b, 所有误差我们就可以认为是独立分布的,1<=i<=n,服从均值为 0,方差为某定值的高斯分布。机器学习中我们假设误差符合均值为0,方差为定值的正态分布!!!

        $\varepsilon_i = |y_i - \hat{y}|$

正太分布公式

        $f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x - \mu)^2}{2\sigma^2}}$

随着参数μ和σ变化,概率分布也产生变化。 下面重要的步骤来了,我们要把一组数据误差出现的总似然,也就是一组数据之所以对应误差出现的 整体可能性 表达出来了,因为数据的误差我们假设服从一个高斯分布,并且通过截距项来平移整体分布的位置从而使得μ=0,所以样本的误差我们可以表达其概率密度函数的值如下:

        $f(\varepsilon|\mu = 0,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(\varepsilon - 0)^2}{2\sigma^2}}$

误差正太分布,简化去掉均值 μ

        $f(\varepsilon| 0,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{\varepsilon ^2}{2\sigma^2}}$

三 误差总似然

累乘问题:

        $P = \prod\limits_{i = 0}^{n}f(\varepsilon_i|0,\sigma^2) = \prod\limits_{i = 0}^{n}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{\varepsilon_i ^2}{2\sigma^2}}$

根据前面公式 $\varepsilon_i = |y_i - W^Tx_i|$ 可以推导出来如下公式:

        $P = \prod\limits_{i = 0}^{n}f(\varepsilon_i|0,\sigma^2) = \prod\limits_{i = 0}^{n}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y_i - W^Tx_i)^2}{2\sigma^2}}$

公式中的未知变量就是 ,即方程的系数,系数包含截距~如果,把上面当成一个方程,就是概率P关于W的方程!其余符号,都是常量!

        $P_W= \prod\limits_{i = 0}^{n}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y_i - W^Tx_i)^2}{2\sigma^2}}$

通过,求对数把累乘问题,转变为累加问题:

        $log_e(P_W) = log_e(\prod\limits_{i = 0}^{n}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y_i - W^Tx_i)^2}{2\sigma^2}})$

简化:

                        $=\sum\limits_{i = 0}^{n}log_e(\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y_i - W^Tx_i)^2}{2\sigma^2}})$

                        $=\sum\limits_{i = 0}^{n}(log_e\frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{\sigma^2}\cdot\frac{1}{2}(y_i - W^Tx_i)^2)$

上面公式是最大似然求对数后的变形,其中 $\pi, \sigma$都是常量,而 $(y_i - W^Tx_i)^2$ 肯定大于!上面求最大值问题,即可转变为如下求最小值问题:

        $L(W) = \frac{1}{2}\sum\limits_{i = 0}^n(y^{(i)} - W^Tx^{(i)})^2$

L代表Loss,表示损失函数,损失函数越小,那么上面最大似然就越大~

有的书本上公式,也可以这样写,用$J(\theta)$表示一个意思,$\theta$的角色就是W:

        $J(\theta) = \frac{1}{2}\sum\limits_{i = 1}^n(y^{(i)} - \theta^Tx^{(i)})^2$

                 $ = \frac{1}{2}\sum\limits_{i = 1}^n(\theta^Tx^{(i)} - y^{(i)})^2$

进一步推导

        $J(\theta) = \frac{1}{2}\sum\limits_{i = 1}^n(h_{\theta}(x^{(i)}) - y^{(i)})^2$

其中:

  $\hat{y} = h_{\theta}(X) =X \theta$ 表示全部数据,是矩阵,X表示多个数据,进行矩阵乘法时,放在前面;

  $\hat{y}i = h{\theta}(x^{(i)}) = \theta^Tx^{(i)}$ 表示第i个数据,是向量,所以进行乘法时,其中一方需要转置。

因为最大似然公式中有个负号,所以最大总似然变成了最小化负号后面的部分。 到这里,我们就已经推导出来了 MSE 损失函数 $J(\theta)$,从公式我们也可以看出来 MSE 名字的来 历,mean squared error,上式也叫做 最小二乘法

        这种最小二乘法估计,其实我们就可以认为,假定了误差服从正太分布,认为样本误差的出现是随机的,独立的,使用最大似然估计思想,利用损失函数最小化 MSE 就能求出最优解!所以反过来说,如果我们的数据误差不是互相独立的,或者不是随机出现的,那么就不适合去假设为正太分布,就不能去用正太分布的概率密度函数带入到总似然的函数中,故而就不能用 MSE 作为损失函数去求解最优解了!所以最小二乘法不是万能的~
        还有譬如假设误差服从泊松分布,或其他分布那就得用其他分布的概率密度函数去推导出损失函数了。
        所以有时我们也可以把线性回归看成是广义线性回归。比如,逻辑回归,泊松回归都属于广义线性回归的一种,这里我们线性回归可以说是最小二乘线性回归。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/125551.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【NI-DAQmx入门】计数器

1.计数器的作用 NI产品的计数器一般来说兼容TTL信号&#xff0c;定义如下&#xff1a;0-0.8V为逻辑低电平&#xff0c;2~5V为高电平&#xff0c;0.8-2V为高阻态&#xff0c;最大上升下降时间为50ns。 计数器可以感测上升沿&#xff08;从逻辑低到逻辑高的转变&#xff09;和下降…

无公网IP,如何使用公网SSH远程访问家中的树莓派?

文章目录 前言如何通过 SSH 连接到树莓派步骤1. 在 Raspberry Pi 上启用 SSH步骤2. 查找树莓派的 IP 地址步骤3. SSH 到你的树莓派步骤 4. 在任何地点访问家中的树莓派4.1 安装 Cpolar内网穿透4.2 cpolar进行token认证4.3 配置cpolar服务开机自启动4.4 查看映射到公网的隧道地址…

RISC-V IDE MRS无感远程协助模块详解

RISC-V IDE MRS无感远程协助模块详解 一、说明 1.1 概述 针对RISC-V/ARM等内核MCU的嵌入式集成开发环境MRS(MounRiver Studio)从V1.90版本开始内置无感远程协助模块&#xff08;Sensorless Remote Assistant Module&#xff0c;以下简称SRA模块&#xff09;。SRA模块是一款支…

如何创建 Spring Boot 项目

如果有pom.xml有插件异常&#xff0c;可以先删除。 maven配置要配置好 然后yaml&#xff0c;再启动就行 server:port: 9991 spring:application:name: demo3参考 如何创建 Spring Boot 项目_创建springboot项目_良月初十♧的博客-CSDN博客

DBA笔记(1)

目录 1、rpm yum 命令的使用&#xff0c;参数的含义 rpm命令&#xff1a; yum命令&#xff1a; 2、上传镜像至虚拟机搭建本地yum源 3、chown chomd 命令每一个参数的含义 chown命令&#xff1a; chmod命令&#xff1a; 4、fdisk partd 硬盘分区命令用法 fdisk命令&am…

C++ 写一个Data类的注意问题

Data类 声明和定义分离的一些问题 声明里面我们不带缺省参数&#xff0c;定义我们给缺省参数&#xff0c;如下面两段代码&#xff1a; Data.h#pragma once #include<iostream> using namespace std; class Data { public:Data(int year,int month,int day);private:in…

【错误解决方案】ModuleNotFoundError: No module named ‘xgboost‘

1. 错误提示 在尝试导入名为xgboost的模块时出现了ModuleNotFoundError。 错误提示&#xff1a;ModuleNotFoundError: No module named xgboost 这个错误通常意味着Python环境中没有安装你试图导入的模块。 2. 解决方案 安装xgboost模块即可解决上述问题。 可以通过Python…

Web3公链之Cosmos生态的项目Celestia

文章目录 Web3公链之Cosmos生态的项目&#xff1a;模块化区块链Celestia什么是CelestiaCelestia网络架构数据可用性问题有哪些可用的解决方案&#xff1f; 发展历史运行节点参考 Web3公链之Cosmos生态的项目&#xff1a;模块化区块链Celestia 什么是Celestia 官网&#xff1a…

项目部署之OpenResty

项目部署之OpenResty 1. OpenResty介绍 OpenResty 是一个基于Nginx的高性能Web平台&#xff0c;用于方便地搭建能够处理超高并发、扩展性极高的动态Web应用、Web服务和动态网关。具备下列特点&#xff1a; 具备Nginx的完整功能基于Lua语言进行扩展&#xff0c;集成了大量精良…

hdlbits系列verilog解答(加减法器)-28

文章目录 一、问题描述二、verilog源码三、仿真结果一、问题描述 可以通过将其中一个输入变为负来从加法器构建加法器-减法器,这相当于将其输入反相然后加 1。最终结果是一个可以执行两个操作的电路:(a + b + 0) 和 (a + ~b + 1)。如果您想更详细地解释该电路的工作原理…

怎么理解电流超前电压、电压超前电流?

电容和电感&#xff0c;电压超前电流&#xff0c;电流超前电压都是我们经常听到的。作为非专业人士&#xff0c;这些听起来确实有点摸不着头脑&#xff0c;今天特别查了下电容、电感、电压电流相关资料&#xff0c;总算是弄明白了&#xff0c;在此特地记录下&#xff01; 1. 电…

【LeetCode:150. 逆波兰表达式求值 | 栈】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

一篇文章入门KNN算法

文章目录 KNNKNN算法KNN in practice推荐系统我们想回答什么问题&#xff1f;探索、清理和准备数据使用算法 Summary 参考文献 KNN 监督学习是一种依赖输入数据来学习函数的算法&#xff0c;该函数在给定新的未标记数据时可以产生适当的输出。 监督学习用于解决分类或回归问题…

LLM - 训练与推理过程中的 GPU 算力评估

目录 一.引言 二.FLOPs 和 TFLOPs ◆ FLOPs [Floating point Opearation Per Second] ◆ TFLOPs [Tera Floating point Opearation Per Second] 三.训练阶段的 GPU 消耗 ◆ 影响训练的因素 ◆ GPT-3 训练统计 ◆ 自定义训练 GPU 评估 四.推理阶段的 GPU 消耗 ◆ 影响…

Pap.er for Mac:高清壁纸应用打造你的专属视觉盛宴

在浩瀚的互联网海洋中&#xff0c;你是否曾为寻找一张心仪的高清壁纸而烦恼&#xff1f;或者是在大量的壁纸应用中感到困扰&#xff0c;不知道哪一个能满足你的需求&#xff1f;今天&#xff0c;我要向你介绍的&#xff0c;是一款独特的5K高清壁纸应用——Pap.er for Mac。 Pa…

leetcode:374. 猜数字大小(二分查找)

一、题目 函数原型&#xff1a;int guessNumber(int n) 二、思路 本题其实就是从 1 - n 中找出所要的答案。利用guess函数来判断数字是否符合答案。 答案小于当前数字&#xff0c;guess函数返回-1 答案等于当前数字&#xff0c;guess函数返回0 答案大于当前数字&#xff0c;gue…

Android NDK开发详解之ndk-build 脚本

Android NDK开发详解之ndk-build 脚本 内部原理从命令行调用选项可调试 build 与发布 build要求 ndk-build 脚本使用 NDK 的基于 Make 的构建系统构建项目。我们针对 ndk-build 使用的 Android.mk 和 Application.mk 配置提供了更具体的文档。 内部原理 运行 ndk-build 脚本相…

JVM 分代垃圾回收过程

堆空间划分了代&#xff1a; 年轻代&#xff08;Young Generation&#xff09;分为 eden 和 Survivor 两个区&#xff0c;Survivor 又分为2个均等的区&#xff0c;S0 和 S1。 首先&#xff0c;新对象都分配到年轻代的 eden 空间&#xff0c;Survivor 刚开始是空的。 当 eden …

招生报名缴费小程序开发笔记(上)

前期调研 1.数字化趋势&#xff1a; 随着社会的数字化转型&#xff0c;越来越多的教育机构倾向于采用数字工具来简化和优化他们的招生和报名过程。招生报名缴费小程序是应对这一趋势的一种解决方案&#xff0c;可以提供高效、方便、快速的在线招生渠道。2.用户需求&#xff1a…

Jtti:Apache服务的反向代理及负载均衡怎么配置

配置Apache服务的反向代理和负载均衡可以帮助您分散负载并提高应用程序的可用性和性能。下面是一些通用的步骤&#xff0c;以配置Apache反向代理和负载均衡。 1. 安装和配置Apache&#xff1a; 确保您已经安装了Apache HTTP服务器。通常&#xff0c;Apache的配置文件位于/etc…