LLM - 训练与推理过程中的 GPU 算力评估

目录

一.引言

二.FLOPs 和 TFLOPs

◆ FLOPs [Floating point Opearation Per Second]

◆ TFLOPs [Tera Floating point Opearation Per Second]

三.训练阶段的 GPU 消耗

◆ 影响训练的因素

◆ GPT-3 训练统计

◆ 自定义训练 GPU 评估

四.推理阶段的 GPU 消耗

◆ 影响推理的因素

◆ 自定义推理 GPU 评估

◆ 计算差异

五.基于 Token 的计算方式

六.总结


一.引言

LLM 大模型时代,GPU 显卡的算力至关重要,无论是训练还是推理都离不开大规模 GPU 的支持。由于工作需要,需要评估 LLM 任务所需显卡算力,搜了一下发现网上关于 GPU 评估计算的文章并不多,特此记录,有不妥的地方欢迎大家评论区多多交流。

二.FLOPs 和 TFLOPs

介绍 GPU 算力评估之前,首先我们需要了解下 GPU 计算能力的常见评估指标。

 FLOPs [Floating point Opearation Per Second]

        表示设备每秒所执行的浮点运算数量。

 TFLOPs [Tera Floating point Opearation Per Second]

        表示设备每秒执行一万亿次浮点运算的数量,即 10^12 次方。

其中浮点运算是指涉及小数点的计算,例如加减乘除。TFLOPs 比 FLOPs 单位更大,其用于衡量计算机或处理器的更高性能。以 L40S 为例,在精度为 FP32 的情况下,其算力可达 91.6 TFLOPs,而 A800 则只有 19.5 TFLOPs,RTX 3060 大约是 12.5 TFLOPS。如果是超级计算机其 TFLOPS 性能指标可达 1000 万亿次每秒。

三.训练阶段的 GPU 消耗

影响训练的因素

计算前先看下训练阶段有哪些因素会影响训练的进程。

- 训练数据大小

- 模型参数规模

- 训练 Epoch 次数

- 显卡算力

GPT-3 训练统计

上面我们介绍了 FLOPs 和 TFLOPs,这里 ZettaFLOPs 代表每秒十万京 (10^21) 次的浮点运算,不同指标之间主要是单位的差异。以 GPT-3 为参照,其为 1750 亿参数的模型,45 TB 训练数据,训练一次大约需要 175 ZettaFLOPs 即 1.75 x 10^23 次浮点数运算。由于这里我们没有获取到 175 ZFLOPs 是一个 Epoch 还是完整训练,所以后续的计算我们先统一按完整训练所需为参照。

自定义训练 GPU 评估

这里假定我们训练的模型是 LLaMA-33B,参数量为 330 以,训练数据量为 50G,GPU 算力以 A800 下 FP32 计算即 19.5 TFLOPs,则训练该模型需要 GPU 算力为:

NeedFLOPs = (330 / 1750) * (0.048828125 / 45) * 1.75 * 10^23 FLOPs

我们使用设备为 A800,则其可提供的算力为:

CalcByA800 = 19.5 * 10^12 FLOPs

最后结合我们需要的天数,例如训练 5 天结束,则 5 天的 s 数为:

TrainTime = 86400 * 5

最终所需 GPU 数量为:

GPUCount = NeedFLOPs / (CalcByA800 * TrainTime)

为了方便计算我们直接改写为 Python 代码:

#!/usr/bin/python
# -*- coding: UTF-8 -*-"""Returns the estimated number of GPUsParameters----------args_num : 当前模型参数数量,单位为 亿data_size : 当前训练数据大小,单位为 GBReturns-------count : 所需 GPU 数量, 未向上取整
"""def calc_gpu_num(_args_num, _data_size, _train_days):need_flops = (_args_num / 1750) * (_data_size / 45) * 1.75 * 10 ** 23calc_by_a800 = 19.5 * 10 ** 12train_time = 86400 * _train_daysgpu_count = need_flops / (calc_by_a800 * train_time)return gpu_countif __name__ == '__main__':args_num = 330 # LLaMA-33Bdata_size = 0.048828125 # 50Gtrain_days = 5 # 训练5天count = calc_gpu_num(args_num, data_size, train_days)print(count)

计算得到 count = 4.250628165558721,我们向上取整可得 5 天训练 50G 数据的 LLaMA-33B 模型需要 5 张 A800,不过这里并未考虑显存或者性能损耗等问题,只是粗略估算。

四.推理阶段的 GPU 消耗

影响推理的因素

- 输入输出数据

- 模型参数规模

- 显卡算力

推理阶段需要计算输入与输出的文本之和,实际计算中,需要将文本 tokenizer 到 token_ids 以便 transformers 计算,中文字符与 token 比例大概为 1:2 即 1 个中文字符对应 2 个 token_ids。GPU 推理计算时,其与输入输出文本和 L、模型维度 D 和模型层数 N 成正比。

自定义推理 GPU 评估

假设输入的 query 文本数为 100,输出的文本书为 1000,则 L = (100 + 1000) * 2 = 2200,按模型维度 D = 1280,层数 N = 96,则计算所需算力:

​NeedFLOPs ≈ L * D * N ≈ 270336000 = 2.7 * 10^8

假设我们使用 A800 用 1s 时间完成本次推理请求:

CalcByA800 = 19.5 * 10^12 FLOPs

则需要 GPU 数量:

count = 270336000 / (19.5 * 10**12) = 1.3863384615384615e-05

反过来 CalcByA800 / NeedFLOPs 可以计算一张 A800 可以满足约 7.2 w 用户 1s 内获取回复,不过这只是理想情况:

people = (19.5 * 10**12) / 270336000 = 72132.45738636363

◆ 计算差异

推理时涉及到文字和计算,例如生成连贯的剧情、生成数学逻辑的推理。这些处理对算力的消耗几乎相同,这是 LLM 的本质是语言模型,只要在输入输出相同的情况下,其处理的都是 token_ids,推理得到的也都是 next_token 的分布,还是 token_ids,所以与具体的表现形式无关,即不同类型的任务,只要输入输出相近,则其对算力的消耗也相近。

五.基于 Token 的计算方式

上面的方式都是基于 FLOPs 为基准计算的,但是由于实际场景下很多信息我们获取的并不完整。例如 GPT-3 的训练 FLOPs 是否准确,训练的 FLOPs 是一个 epoch 还是一整个训练流程,因此实际场景下还可以采用另一种方式,即基于 Token 处理效率的计算,但是这种计算方式有一个前提,就是需要你事先测算出对应 GPU 设备每秒处理的 token 数量,即 Process Tokens / s。

以博主实际测算为例,P40 即 4090 的 token 处理能力约为 25 Token / s,假设我们一天需要请求 1000 次,每次输入输出共 1000 个汉字,共花费 10 h 处理完成,则需要 P40 的数量可通过下述公式计算:

def calc_gpu_num_by_token(post_token_num, post_time_all, token_process):return post_token_num / (post_time_all * token_process)if __name__ == '__main__':token_num = 1000 * 1000 * 2  # 1000 次请求、1000 个汉字对应 2000 个 tokentime_cost = 10 * 3600  # 总处理时间token_process_num = 25  # 每s可处理 token 数目print(calc_gpu_num_by_token(token_num, time_cost, token_process_num))

算下来 10h 处理完这些需求需要 2.223 台 P40,则向上取整得到需要 3 台 P40。

六.总结

这里分享了几种 GPU 算力计算的方法,上面的计算都是基于理想状态,实际情况下还需要考虑多机多卡的 IO 延迟,机器的网络延迟,以及模型大小与 GPU 显存的供需关系等等。更多的数据还是需要自己实践出真知,有问题欢迎大家在评论区一直讨论,因为现在网上这方面的信息还是相对较少,可以一起分享一起进步!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/125529.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

bitsandbytes 遇到CUDA Setup failed despite GPU being available.

使用conda 管理环境时加载大模型会遇到bitsandbytes无法识别cuda的情况: 此处windows系统: pip install bitsandbytes-windowslinux 系统: 将bitsandbytes版本降低至0.39.0 pip install bitsandbytes0.39.0

Pap.er for Mac:高清壁纸应用打造你的专属视觉盛宴

在浩瀚的互联网海洋中,你是否曾为寻找一张心仪的高清壁纸而烦恼?或者是在大量的壁纸应用中感到困扰,不知道哪一个能满足你的需求?今天,我要向你介绍的,是一款独特的5K高清壁纸应用——Pap.er for Mac。 Pa…

leetcode:374. 猜数字大小(二分查找)

一、题目 函数原型:int guessNumber(int n) 二、思路 本题其实就是从 1 - n 中找出所要的答案。利用guess函数来判断数字是否符合答案。 答案小于当前数字,guess函数返回-1 答案等于当前数字,guess函数返回0 答案大于当前数字,gue…

golang工程— grpc-gateway健康检查和跨域配置

grpc健康检查网关跨域配置 grpc健康检查 grpc健康检查使用 服务端配置 import ("google.golang.org/grpc/health""google.golang.org/grpc/health/grpc_health_v1" )//添加健康检查服务,多路复用 grpc_health_v1.RegisterHealthServer(s, health.NewSe…

Java Web 项目通用基础响应结果类 BaseRespResult

文章归档&#xff1a;https://www.yuque.com/u27599042/coding_star/cl36rbz6b51t5x44 BaseRespResult&#xff1a;用于封装响应客户端数据的基本结果类 依赖 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-…

织梦dedecms后台档案列表显示空白或显示不了文章的解决方法

织梦dedecms后台档案列表显示空白或显示不了文章的解决方法 dede/content_list.php空白解决方法如下 dede/content_list.php空白 在DEDE后台可以查看栏目文章&#xff0c;但是所有档案列表却为空白或者显示不了文章,如图所示&#xff1a; 后来找到dede/content_list.php,看了下…

Android NDK开发详解之ndk-build 脚本

Android NDK开发详解之ndk-build 脚本 内部原理从命令行调用选项可调试 build 与发布 build要求 ndk-build 脚本使用 NDK 的基于 Make 的构建系统构建项目。我们针对 ndk-build 使用的 Android.mk 和 Application.mk 配置提供了更具体的文档。 内部原理 运行 ndk-build 脚本相…

使用pytorch解析mnist数据集

当解析MNIST数据集时&#xff0c;以下是代码的详细介绍&#xff1a; 1. **导入必要的库**&#xff1a; import torch import torchvision from torchvision import transforms from torchvision.datasets import MNIST import matplotlib.pyplot as plt 这些库是用于处理数…

持续集成部署-k8s-服务发现-Ingress 路径匹配与虚拟主机匹配

持续集成部署-k8s-服务发现-Ingress 路径匹配与虚拟主机匹配 1. 安装 Ingress-Nginx2. 创建要代理的 Service3. 创建一个新的 Ingress-Nginx1. 安装 Ingress-Nginx 要使用 Ingress-Nginx 首先第一步是需要先安装它,安装的步骤可以参考:持续集成部署-k8s-服务发现-Ingress 2…

C++基础复习

C—Cherno 一、C中的引用 #include<iostream> #include"Log.h"void Increment(int& value) {value; }int main() {int a 5;int b 10;//引用不能只声明不赋值//&就和数据类型差不多&#xff0c;要和int写在一起&#xff0c;int&int& ref a…

JVM 分代垃圾回收过程

堆空间划分了代&#xff1a; 年轻代&#xff08;Young Generation&#xff09;分为 eden 和 Survivor 两个区&#xff0c;Survivor 又分为2个均等的区&#xff0c;S0 和 S1。 首先&#xff0c;新对象都分配到年轻代的 eden 空间&#xff0c;Survivor 刚开始是空的。 当 eden …

4. 一文快速学懂常用工具——GDB(上)

本章讲解知识点 什么是GDB?GDB 的安装在Windows平台上使用GDB攻略为什么 Git 可以?本专栏适合于软件开发刚入职的学生或人士,有一定的编程基础,帮助大家快速掌握工作中必会的工具和指令。本专栏针对面试题答案进行了优化,尽量做到好记、言简意赅。如专栏内容有错漏,欢迎在…

添加多个单元对象

开发环境&#xff1a; Windows 11 家庭中文版Microsoft Visual Studio Community 2019VTK-9.3.0.rc0vtk-example参考代码 demo解决问题&#xff1a;不同阶段添加多个单元对象。 定义一个点集和一个单元集合&#xff0c;单元的类型可以是点、三角形、矩形、多边形等基本图形。只…

2023NOIP A层联测21-异或

给定一长度为 N N N 的由非负整数组成的数组 a a a&#xff0c;你需要进行一系列操作&#xff0c;每次操作选择一个区间 [ l , r ] [l,r] [l,r]&#xff0c;将 a [ l , r ] a_{[l,r]} a[l,r]​ 异或上 w w w。你需要将 a i a_i ai​ 全部变为 0 0 0。 求最小操作次数。…

MaxPatrol SIEM 8.0:用于行为分析的 ML,降低了硬件要求,每秒可处理超过 50 万个信息安全事件

Positive Technologies 发布了 MaxPatrol SIEM 信息安全事件监控和事件检测系统的第八个版本。更新后的产品将使该公司在需要超大型安装的公司和需要使用人工智能技术的政府机构中的市场份额增加近三分之一。 主要变化包括降低了硬件要求&#xff0c;提高了系统性能&#xff0…

【Windows】线程同步之信号量(Semaphores)

概述&#xff1a; semaphores 的说明和使用 微软官方文档&#xff1a; Semaphore Objects - Win32 apps | Microsoft Learn Semaphores是解决各种 producer/consumer问题的关键要素。这种问题会存有一个缓冲区&#xff0c;可能在同一时间内被读出数据或被写入数据。 理论可以证…

招生报名缴费小程序开发笔记(上)

前期调研 1.数字化趋势&#xff1a; 随着社会的数字化转型&#xff0c;越来越多的教育机构倾向于采用数字工具来简化和优化他们的招生和报名过程。招生报名缴费小程序是应对这一趋势的一种解决方案&#xff0c;可以提供高效、方便、快速的在线招生渠道。2.用户需求&#xff1a…

Jtti:Apache服务的反向代理及负载均衡怎么配置

配置Apache服务的反向代理和负载均衡可以帮助您分散负载并提高应用程序的可用性和性能。下面是一些通用的步骤&#xff0c;以配置Apache反向代理和负载均衡。 1. 安装和配置Apache&#xff1a; 确保您已经安装了Apache HTTP服务器。通常&#xff0c;Apache的配置文件位于/etc…

VSCode-C/C++环境配置

0.下载VSCode VSCode官网 Visual Studio Code - Code Editing. Redefined 1.安装VSCode 2.编译器下载与配置 2.1下载编译器安装包 编译器的安装包分为两种一种是在线的一种是离线的,其区别的特点如下 在线安装&#xff08;只是个下载器&#xff0c;打开后还要下载各种东西…